1887

Abstract

Nasal colonization by the pathogen Staphylococcus aureus is a risk factor for subsequent infection. Loss of function mutations in the gene encoding the virulence regulator Rsp are associated with the transition of S. aureus from a colonizing isolate to one that causes bacteraemia. Here, we report the identification of several novel activity-altering mutations in rsp detected in clinical isolates, including for the first time, mutations that enhance agr operon activity. We assessed how these mutations affected infection-relevant phenotypes and found loss and enhancement of function mutations to have contrasting effects on S. aureus survival in blood and antibiotic susceptibility. These findings add to the growing body of evidence that suggests S. aureus ‘trades off’ virulence for the acquisition of traits that benefit survival in the host, and indicates that infection severity and treatment options can be significantly affected by mutations in the virulence regulator rsp.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000695
2018-07-20
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/9/1189.html?itemId=/content/journal/micro/10.1099/mic.0.000695&mimeType=html&fmt=ahah

References

  1. Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998; 339:520–532 [View Article][PubMed]
    [Google Scholar]
  2. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28:603–661 [View Article][PubMed]
    [Google Scholar]
  3. von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study group. N Engl J Med 2001; 344:11–16 [View Article][PubMed]
    [Google Scholar]
  4. van Belkum A, Verkaik NJ, de Vogel CP, Boelens HA, Verveer J et al. Reclassification of Staphylococcus aureus nasal carriage types. J Infect Dis 2009; 199:1820–1826 [View Article][PubMed]
    [Google Scholar]
  5. Edwards AM, Massey RC, Clarke SR. Molecular mechanisms of Staphylococcus aureus nasopharyngeal colonization. Mol Oral Microbiol 2012; 27:1–10 [View Article][PubMed]
    [Google Scholar]
  6. Lamers RP, Stinnett JW, Muthukrishnan G, Parkinson CL, Cole AM. Evolutionary analyses of Staphylococcus aureus identify genetic relationships between nasal carriage and clinical isolates. PLoS One 2011; 6:e16426 [View Article][PubMed]
    [Google Scholar]
  7. Young BC, Golubchik T, Batty EM, Fung R, Larner-Svensson H et al. Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc Natl Acad Sci USA 2012; 109:4550–4555 [View Article][PubMed]
    [Google Scholar]
  8. Young BC, Wu CH, Gordon NC, Cole K, Price JR et al. Severe infections emerge from commensal bacteria by adaptive evolution. Elife 2017; 6:e30637 [View Article][PubMed]
    [Google Scholar]
  9. Das S, Lindemann C, Young BC, Muller J, Österreich B et al. Natural mutations in a Staphylococcus aureus virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation. Proc Natl Acad Sci USA 2016; 113:E3101E3110 [View Article][PubMed]
    [Google Scholar]
  10. Li T, He L, Song Y, Villaruz AE, Joo HS et al. AraC-type regulator Rsp adapts Staphylococcus aureus gene expression to acute infection. Infect Immun 2015; 84:723–734 [View Article][PubMed]
    [Google Scholar]
  11. Le KY, Otto M. Quorum-sensing regulation in staphylococci-an overview. Front Microbiol 2015; 6:1174 [View Article][PubMed]
    [Google Scholar]
  12. Traber KE, Lee E, Benson S, Corrigan R, Cantera M et al. agr function in clinical Staphylococcus aureus isolates. Microbiology 2008; 154:2265–2274 [View Article][PubMed]
    [Google Scholar]
  13. Schweizer ML, Furuno JP, Sakoulas G, Johnson JK, Harris AD et al. Increased mortality with accessory gene regulator (agr) dysfunction in Staphylococcus aureus among bacteremic patients. Antimicrob Agents Chemother 2011; 55:1082–1087 [View Article][PubMed]
    [Google Scholar]
  14. Smyth DS, Kafer JM, Wasserman GA, Velickovic L, Mathema B et al. Nasal carriage as a source of agr-defective Staphylococcus aureus bacteremia. J Infect Dis 2012; 206:1168–1177 [View Article][PubMed]
    [Google Scholar]
  15. Chong YP, Kim ES, Park SJ, Park KH, Kim T et al. Accessory gene regulator (agr) dysfunction in Staphylococcus aureus bloodstream isolates from South Korean patients. Antimicrob Agents Chemother 2013; 57:1509–1512 [View Article][PubMed]
    [Google Scholar]
  16. Park SY, Chong YP, Park HJ, Park KH, Moon SM et al. agr Dysfunction and persistent methicillin-resistant Staphylococcus aureus bacteremia in patients with removed eradicable foci. Infection 2013; 41:111–119 [View Article][PubMed]
    [Google Scholar]
  17. Painter KL, Krishna A, Wigneshweraraj S, Edwards AM. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia?. Trends Microbiol 2014; 22:676–685 [View Article][PubMed]
    [Google Scholar]
  18. Kang CK, Cho JE, Choi YJ, Jung Y, Kim NH et al. agr dysfunction affects staphylococcal cassette chromosome mec type-dependent clinical outcomes in methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 2015; 59:3125–3132 [View Article][PubMed]
    [Google Scholar]
  19. Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 2013; 23:653–664 [View Article][PubMed]
    [Google Scholar]
  20. Köser CU, Holden MT, Ellington MJ, Cartwright EJ, Brown NM et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 2012; 366:2267–2275 [View Article][PubMed]
    [Google Scholar]
  21. Harris SR, Cartwright EJ, Török ME, Holden MT, Brown NM et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis 2013; 13:130–136 [View Article][PubMed]
    [Google Scholar]
  22. Reuter S, Török ME, Holden MT, Reynolds R, Raven KE et al. Building a genomic framework for prospective MRSA surveillance in the United Kingdom and the Republic of Ireland. Genome Res 2016; 26:263–270 [View Article][PubMed]
    [Google Scholar]
  23. Hsu LY, Harris SR, Chlebowicz MA, Lindsay JA, Koh TH et al. Evolutionary dynamics of methicillin-resistant Staphylococcus aureus within a healthcare system. Genome Biol 2015; 16:81 [View Article][PubMed]
    [Google Scholar]
  24. Donker T, Reuter S, Scriberras J, Reynolds R, Brown NM et al. Population genetic structuring of methicillin-resistant Staphylococcus aureus clone EMRSA-15 within UK reflects patient referral patterns. Microb Genom 2017; 3:e000113 [View Article][PubMed]
    [Google Scholar]
  25. James EH, Edwards AM, Wigneshweraraj S. Transcriptional downregulation of agr expression in Staphylococcus aureus during growth in human serum can be overcome by constitutively active mutant forms of the sensor kinase AgrC. FEMS Microbiol Lett 2013; 349:153–162 [View Article][PubMed]
    [Google Scholar]
  26. Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 2013; 4:e00537-12 [View Article][PubMed]
    [Google Scholar]
  27. Monk IR, Shah IM, Xu M, Tan MW, Foster TJ. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 2012; 3:e00277-11 [View Article][PubMed]
    [Google Scholar]
  28. Betts MJ, Russell RB. Amino acid properties and consequences of substitutions. In Barnes MR, Gray IC. (editors) Bioinformatics for Geneticists Chichester, West Sussex PO19 8SQ, England: John Wiley & Sons Ltd; 2003 pp. 289–316
    [Google Scholar]
  29. Charpentier E, Anton AI, Barry P, Alfonso B, Fang Y et al. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol 2004; 70:6076–6085 [View Article][PubMed]
    [Google Scholar]
  30. Nicod SS, Weinzierl RO, Burchell L, Escalera-Maurer A, James EH et al. Systematic mutational analysis of the LytTR DNA binding domain of Staphylococcus aureus virulence gene transcription factor AgrA. Nucleic Acids Res 2014; 42:12523–12536 [View Article][PubMed]
    [Google Scholar]
  31. Pader V, James EH, Painter KL, Wigneshweraraj S, Edwards AM. The Agr quorum-sensing system regulates fibronectin binding but not hemolysis in the absence of a functional electron transport chain. Infect Immun 2014; 82:4337–4347 [View Article][PubMed]
    [Google Scholar]
  32. Painter KL, Hall A, Ha KP, Edwards AM. The electron transport chain sensitizes Staphylococcus aureus and Enterococcus faecalis to the oxidative burst. Infect Immun 2017; 85:e00659-17 [View Article][PubMed]
    [Google Scholar]
  33. Surewaard BG, de Haas CJ, Vervoort F, Rigby KM, Deleo FR et al. Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol 2013; 15:1427–1437 [View Article][PubMed]
    [Google Scholar]
  34. McGuinness W, Kobayashi S, Deleo F. Evasion of neutrophil killing by Staphylococcus aureus. Pathogens 2016; 5:32 [View Article]
    [Google Scholar]
  35. Naber CK. Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. Clin Infect Dis 2009; 48:S231–S237 [View Article][PubMed]
    [Google Scholar]
  36. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci USA 2007; 104:9451–9456 [View Article][PubMed]
    [Google Scholar]
  37. Holmes NE, Turnidge JD, Munckhof WJ, Robinson JO, Korman TM et al. Genetic and molecular predictors of high vancomycin MIC in Staphylococcus aureus bacteremia isolates. J Clin Microbiol 2014; 52:3384–3393 [View Article][PubMed]
    [Google Scholar]
  38. Viedma E, Sanz F, Orellana MA, San Juan R, Aguado JM et al. Relationship between agr dysfunction and reduced vancomycin susceptibility in methicillin-susceptible Staphylococcus aureus causing bacteraemia. J Antimicrob Chemother 2014; 69:51–58 [View Article][PubMed]
    [Google Scholar]
  39. Tsuji BT, Rybak MJ, Lau KL, Sakoulas G. Evaluation of accessory gene regulator (agr) group and function in the proclivity towards vancomycin intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2007; 51:1089–1091 [View Article][PubMed]
    [Google Scholar]
  40. Harigaya Y, Ngo D, Lesse AJ, Huang V, Tsuji BT. Characterization of heterogeneous vancomycin-intermediate resistance, MIC and accessory gene regulator (agr) dysfunction among clinical bloodstream isolates of Staphyloccocus aureus. BMC Infect Dis 2011; 11:287 [View Article][PubMed]
    [Google Scholar]
  41. Pader V, Hakim S, Painter KL, Wigneshweraraj S, Clarke TB et al. Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol 2016; 2:16194 [View Article][PubMed]
    [Google Scholar]
  42. CLSI Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard. Wayne, Pennsylvania 19087, USA: CLSI; 2012
    [Google Scholar]
  43. Cui L, Ma X, Sato K, Okuma K, Tenover FC et al. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol 2003; 41:5–14 [View Article][PubMed]
    [Google Scholar]
  44. Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labischinski H et al. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother 1998; 42:199–209 [View Article][PubMed]
    [Google Scholar]
  45. Cázares-Domínguez V, Cruz-Córdova A, Ochoa SA, Escalona G, Arellano-Galindo J et al. Vancomycin tolerant, methicillin-resistant Staphylococcus aureus reveals the effects of vancomycin on cell wall thickening. PLoS One 2015; 10:e0118791 [View Article][PubMed]
    [Google Scholar]
  46. Smeltzer MS. Staphylococcus aureus pathogenesis: the importance of reduced cytotoxicity. Trends Microbiol 2016; 24:681–682 [View Article][PubMed]
    [Google Scholar]
  47. Schleif R. AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS Microbiol Rev 2010; 34:779–796 [View Article][PubMed]
    [Google Scholar]
  48. Santiago AE, Yan MB, Tran M, Wright N, Luzader DH et al. A large family of anti-activators accompanying XylS/AraC family regulatory proteins. Mol Microbiol 2016; 101:314–332 [View Article][PubMed]
    [Google Scholar]
  49. Santiago AE, Ruiz-Perez F, Jo NY, Vijayakumar V, Gong MQ et al. A large family of antivirulence regulators modulates the effects of transcriptional activators in Gram-negative pathogenic bacteria. PLoS Pathog 2014; 10:e1004153 [View Article][PubMed]
    [Google Scholar]
  50. Laabei M, Uhlemann AC, Lowy FD, Austin ED, Yokoyama M et al. Evolutionary trade-offs underlie the multi-faceted virulence of Staphylococcus aureus. PLoS Biol 2015; 13:e1002229 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000695
Loading
/content/journal/micro/10.1099/mic.0.000695
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error