1887

Abstract

This work describes the response of Lactobacillusvini, a bacterium found as a contaminant in winemaking and fuel ethanol fermentation processes, to acid stress caused by inorganic or weak organic acids. First, we observed for the first time that bacterial cells become resistant to lysis by lysozyme when submitted to acidic stress. Then, the predicted intracellular acidification can be reversed by the presence of arginine, histidine and glutamine. However, these molecules were not able to reverse the effect of resistance to lysis, indicating the independence of these mechanisms. In general, a reduction in the expression of the main genes involved in the synthesis and deposition of material in the cell wall was observed, whereas the genes involved in the reabsorption of this structure showed increased expression. These data suggested that L. vini responds to the acidification of the medium through early entry into the stationary phase, firing two signals for cell wall remodelling and maintenance of intracellular pHin a coordinated way, most probably by alkalization and the proton extrusion process. If this picture is conserved among lactobacilli, it may not only have an impact on research associated with fermentation processes, but also on that associated with probiotic improvement.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000738
2018-11-14
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/1/26.html?itemId=/content/journal/micro/10.1099/mic.0.000738&mimeType=html&fmt=ahah

References

  1. Lucena BT, dos Santos BM, Moreira JL, Moreira AP, Nunes AC et al. Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol 2010; 10:298 [View Article][PubMed]
    [Google Scholar]
  2. Beckner M, Ivey ML, Phister TG. Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 2011; 53:387–394 [View Article][PubMed]
    [Google Scholar]
  3. Basso TO, Gomes FS, Lopes ML, de Amorim HV, Eggleston G et al. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie van Leeuwenhoek 2014; 105:169–177 [View Article][PubMed]
    [Google Scholar]
  4. Rich JO, Leathers TD, Bischoff KM, Anderson AM, Nunnally MS. Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation. Bioresour Technol 2015; 196:347–354 [View Article][PubMed]
    [Google Scholar]
  5. Muthaiyan A, Limayem A, Ricke SC. Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations. Prog Energy Combust Sci 2011; 37:351–370 [View Article]
    [Google Scholar]
  6. Mendonça AA, de Lucena BT, de Morais MM, de Morais MA. First identification of Tn916-like element in industrial strains of Lactobacillus vini that spread the tet-M resistance gene. FEMS Microbiol Lett 2016; 363:fnv240 [View Article][PubMed]
    [Google Scholar]
  7. Murphree CA, Heist EP, Moe LA. Antibiotic resistance among cultured bacterial isolates from bioethanol fermentation facilities across the United States. Curr Microbiol 2014; 69:277–285 [View Article][PubMed]
    [Google Scholar]
  8. Rasmussen ML, Koziel JA, Jane JL, Pometto AL. Reducing bacterial contamination in fuel ethanol fermentations by ozone treatment of uncooked corn mash. J Agric Food Chem 2015; 63:5239–5248 [View Article][PubMed]
    [Google Scholar]
  9. Costa MAS, Cerri BC, Ceccato-Antonini SR. Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process for fuel ethanol production. Lett Appl Microbiol 2018; 66:77–85 [View Article][PubMed]
    [Google Scholar]
  10. Tiukova I, Eberhard T, Passoth V. Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae. Biotechnol Appl Biochem 2014; 61:40–44 [View Article][PubMed]
    [Google Scholar]
  11. Skinner KA, Leathers TD. Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 2004; 31:401–408 [View Article][PubMed]
    [Google Scholar]
  12. Rodas AM, Ferrer S, Pardo I. Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int J Syst Evol Microbiol 2005; 55:197–207 [View Article][PubMed]
    [Google Scholar]
  13. Barre P. Identification of thermobacteria and homofermentative, thermophilic, pentose-utilizing lactobacilli from high temperature fermenting grape musts. J Appl Bacteriol 1978; 44:125–129 [View Article]
    [Google Scholar]
  14. Luckwu de Lucena BT, Silva GG, Manoel dos Santos B, Dias GM, Amaral GR et al. Genome sequences of the ethanol-tolerant Lactobacillus vini strains LMG 23202T and JP7.8.9. J Bacteriol 2012; 194:3018 [View Article][PubMed]
    [Google Scholar]
  15. Scheffers DJ, Pinho MG. Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 2005; 69:585–607 [View Article][PubMed]
    [Google Scholar]
  16. Münch D, Sahl HG. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides. Biochim Biophys Acta 2015; 1848:3062–3071 [View Article][PubMed]
    [Google Scholar]
  17. Sauvage E, Terrak M. Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials. Antibiotics 2016; 5:12–27 [View Article][PubMed]
    [Google Scholar]
  18. Chapot-Chartier MP, Kulakauskas S. Cell wall structure and function in lactic acid bacteria. Microb Cell Fact 2014; 13 Suppl 1:S9 [View Article][PubMed]
    [Google Scholar]
  19. Weidenmaier C, Peschel A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 2008; 6:276–287 [View Article][PubMed]
    [Google Scholar]
  20. Abi Khattar Z, Rejasse A, Destoumieux-Garzón D, Escoubas JM, Sanchis V et al. The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects. J Bacteriol 2009; 191:7063–7073 [View Article][PubMed]
    [Google Scholar]
  21. Bernard E, Rolain T, Courtin P, Guillot A, Langella P et al. Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. J Biol Chem 2011; 286:23950–23958 [View Article][PubMed]
    [Google Scholar]
  22. Reith J, Mayer C. Peptidoglycan turnover and recycling in Gram-positive bacteria. Appl Microbiol Biotechnol 2011; 92:1–11 [View Article][PubMed]
    [Google Scholar]
  23. Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 2008; 32:259–286 [View Article][PubMed]
    [Google Scholar]
  24. Davis KM, Weiser JN. Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect Immun 2011; 79:562–570 [View Article][PubMed]
    [Google Scholar]
  25. Bera A, Biswas R, Herbert S, Kulauzovic E, Weidenmaier C et al. Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus. J Bacteriol 2007; 189:280–283 [View Article][PubMed]
    [Google Scholar]
  26. Guariglia-Oropeza V, Helmann JD. Bacillus subtilis σV confers lysozyme resistance by activation of two cell wall modification pathways, peptidoglycan O-acetylation and D-alanylation of teichoic acids. J Bacteriol 2011; 193:6223–6232 [View Article][PubMed]
    [Google Scholar]
  27. Hastie JL, Williams KB, Bohr LL, Houtman JC, Gakhar L et al. The anti-sigma factor RsiV Is a bacterial receptor for lysozyme: co-crystal structure determination and demonstration that binding of lysozyme to RsiV is required for σV activation. PLoS Genet 2016; 12:e100628730 [View Article][PubMed]
    [Google Scholar]
  28. Palumbo E, Deghorain M, Cocconcelli PS, Kleerebezem M, Geyer A et al. D-alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin. J Bacteriol 2006; 188:3709–3715 [View Article][PubMed]
    [Google Scholar]
  29. Piuri M, Sanchez-Rivas C, Ruzal SM. Cell wall modifications during osmotic stress in Lactobacillus casei. J Appl Microbiol 2005; 98:84–95 [View Article][PubMed]
    [Google Scholar]
  30. Narendranath NV, Hynes SH, Thomas KC, Ingledew WM. Effects of lactobacilli on yeast-catalyzed ethanol fermentations. Appl Environ Microbiol 1997; 63:4158–4163[PubMed]
    [Google Scholar]
  31. Basso LC, Basso TO, Rocha SN. Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. In Biofuel Production-Recent Developments and Prospects pp. 85–100
    [Google Scholar]
  32. Wu C, Zhang J, Du G, Chen J. Aspartate protects Lactobacillus casei against acid stress. Appl Microbiol Biotechnol 2013; 97:4083–4093 [View Article][PubMed]
    [Google Scholar]
  33. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  34. Marco ML, Kleerebezem M. Assessment of real-time RT-PCR for quantification of Lactobacillus plantarum gene expression during stationary phase and nutrient starvation. J Appl Microbiol 2008; 104:587–594 [View Article][PubMed]
    [Google Scholar]
  35. Ginzinger DG. Gene quantification using real-time quantitative PCR. Exp Hematol 2002; 30:503–512 [View Article]
    [Google Scholar]
  36. Stenico V, Baffoni L, Gaggìa F, Biavati B. Validation of candidate reference genes in Bifidobacterium adolescentis for gene expression normalization. Anaerobe 2014; 27:34–39 [View Article][PubMed]
    [Google Scholar]
  37. Løvdal T, Saha A. Reference gene selection in Carnobacterium maltaromaticum, Lactobacillus curvatus, and Listeria innocua subjected to temperature and salt stress. Mol Biotechnol 2014; 56:210–222 [View Article][PubMed]
    [Google Scholar]
  38. Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 2005; 6:279–284 [View Article][PubMed]
    [Google Scholar]
  39. Passoth V, Blomqvist J, Schnürer J. Dekkera bruxellensis and Lactobacillus vini form a stable ethanol-producing consortium in a commercial alcohol production process. Appl Environ Microbiol 2007; 73:4354–4356 [View Article][PubMed]
    [Google Scholar]
  40. Cotter PD, Hill C. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 2003; 67:429–453 [View Article][PubMed]
    [Google Scholar]
  41. de Lucena RM, Elsztein C, Simões DA, de Morais MA. Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid. J Appl Microbiol 2012; 113:629–640 [View Article][PubMed]
    [Google Scholar]
  42. Logardt IM, Neujahr HY. Lysis of modified walls from Lactobacillus fermentum. J Bacteriol 1975; 124:73–77[PubMed]
    [Google Scholar]
  43. Goffin P, van de Bunt B, Giovane M, Leveau JH, Höppener-Ogawa S et al. Understanding the physiology of Lactobacillus plantarum at zero growth. Mol Syst Biol 2010; 6:413 [View Article][PubMed]
    [Google Scholar]
  44. Papadimitriou K, Á A, Bron PA, De AM, Gobbetti M et al. Stress Physiology of Lactic Acid Bacteria vol. 80 2016 pp. 837–890
    [Google Scholar]
  45. Siegumfeldt H, Björn Rechinger K, Jakobsen M. Dynamic changes of intracellular pH in individual lactic acid bacterium cells in response to a rapid drop in extracellular pH. Appl Environ Microbiol 2000; 66:2330–2335 [View Article][PubMed]
    [Google Scholar]
  46. Arena ME, Manca de Nadra MC, Muñoz R. The arginine deiminase pathway in the wine lactic acid bacterium Lactobacillus hilgardii X1B: structural and functional study of the arcABC genes. Gene 2002; 301:61–66 [View Article][PubMed]
    [Google Scholar]
  47. Teixeira JS, Seeras A, Sanchez-Maldonado AF, Zhang C, Su MS et al. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri. Food Microbiol 2014; 42:172–180 [View Article][PubMed]
    [Google Scholar]
  48. Molenaar D, Bosscher JS, Ten Brink B, Driessen AJ, Konings WN. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J Bacteriol 1993; 175:2864–2870 [View Article][PubMed]
    [Google Scholar]
  49. Peschel A, Vuong C, Otto M, Götz F. The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob Agents Chemother 2000; 44:2845–2847 [View Article][PubMed]
    [Google Scholar]
  50. Komatsuzawa H, Fujiwara T, Nishi H, Yamada S, Ohara M et al. The gate controlling cell wall synthesis in Staphylococcus aureus. Mol Microbiol 2004; 53:1221–1231 [View Article][PubMed]
    [Google Scholar]
  51. Alcántara C, Zúñiga M. Proteomic and transcriptomic analysis of the response to bile stress of Lactobacillus casei BL23. Microbiology 2012; 158:1206–1218 [View Article][PubMed]
    [Google Scholar]
  52. Barreteau H, Kovac A, Boniface A, Sova M, Gobec S et al. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:168–207 [View Article][PubMed]
    [Google Scholar]
  53. Koskenniemi K, Laakso K, Koponen J, Kankainen M, Greco D et al. Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics 2011; 10:M110.002741 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000738
Loading
/content/journal/micro/10.1099/mic.0.000738
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error