1887

Abstract

Characterization of ‘unknown’ proteins is one of the challenges of the post-genomic era. Here, we report a study of YdiB, which belongs to an uncharted class of bacterial P-loop ATPases. Precise deletion of the gene yielded a mutant with much reduced growth rate compared to the wild-type strain. , purified YdiB was in equilibrium among different forms, monomers, dimers and oligomers, and this equilibrium was strongly affected by salts; high concentrations of NaCl favoured the monomeric over the oligomeric form of the enzyme. Interestingly, the ATPase activity of the monomer was about three times higher than that of the oligomer, and the monomer showed a of about 60 μM for ATP and a of about 10 nmol min (mg protein) ( ∼10 h). This low ATPase activity was shown to be specific to YdiB because mutation of an invariant lysine residue in the P-loop motif (K41A) strongly attenuated this rate. This mutant was unable to restore a normal growth phenotype when introduced into a conditional knockout strain for , showing that the ATPase activity of YdiB is required for the function of the protein. Oligomerization was also observed with the purified YjeE from , a YdiB orthologue, suggesting that this property is shared by all members of this family of ATPases. Importantly, dimers of YdiB were also observed in a extract, or when stabilized by formaldehyde cross-linking for YjeE from , suggesting that oligomerization might regulate the function of this new class of proteins .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021543-0
2009-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/944.html?itemId=/content/journal/micro/10.1099/mic.0.021543-0&mimeType=html&fmt=ahah

References

  1. Allali-Hassani A., Campbell T. L., Ho A., Schertzer J. W., Brown E. D. 2004; Probing the active site of YjeE: a vital Escherichia coli protein of unknown function. Biochem J 384:577–584
    [Google Scholar]
  2. Arifuzzaman M., Maeda M., Itoh A., Nishikata K., Takita C., Saito R., Ara T., Nakahigashi K., Huang H. C. other authors 2006; Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res 16:686–691
    [Google Scholar]
  3. Barilla D., Rosenberg M. F., Nobbmann U., Hayes F. 2005; Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF. EMBO J 24:1453–1464
    [Google Scholar]
  4. Bhavsar A. P., Beveridge T. J., Brown E. D. 2001a; Precise deletion of tagD and controlled depletion of its product, glycerol 3-phosphate cytidylyltransferase, leads to irregular morphology and lysis of Bacillus subtilis grown at physiological temperature. J Bacteriol 183:6688–6693
    [Google Scholar]
  5. Bhavsar A. P., Zhao X., Brown E. D. 2001b; Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: conditional complementation of a teichoic acid mutant. Appl Environ Microbiol 67:403–410
    [Google Scholar]
  6. Brown E. D. 2005; Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology. Biochem Cell Biol 83:738–746
    [Google Scholar]
  7. Brown E. D., Wright G. D. 2005; New targets and screening approaches in antimicrobial drug discovery. Chem Rev 105:759–774
    [Google Scholar]
  8. Butland G., Peregrin-Alvarez J. M., Li J., Yang W., Yang X., Canadien V., Starostine A., Richards D., Beattie B. other authors 2005; Interaction network containing conserved and essential protein complexes in Escherichia coli . Nature 433:531–537
    [Google Scholar]
  9. Campbell T. L., Ederer C. S., Allali-Hassani A., Brown E. D. 2007; Isolation of the rstA gene as a multicopy suppressor of YjeE, an essential ATPase of unknown function in Escherichia coli . J Bacteriol 189:3318–3321
    [Google Scholar]
  10. Crowther L. J., Yamagata A., Craig L., Tainer J. A., Donnenberg M. S. 2005; The ATPase activity of BfpD is greatly enhanced by zinc and allosteric interactions with other Bfp proteins. J Biol Chem 280:24839–24848
    [Google Scholar]
  11. Dam J., Schuck P. 2004; Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Methods Enzymol 384:185–212
    [Google Scholar]
  12. Damaschun G., Damaschun H., Gast K., Misselwitz R., Muller J. J., Pfeil W., Zirwer D. 1993; Cold denaturation-induced conformational changes in phosphoglycerate kinase from yeast. Biochemistry 32:7739–7746
    [Google Scholar]
  13. Fang G., Rocha E., Danchin A. 2005; How essential are nonessential genes?. Mol Biol Evol 22:2147–2156
    [Google Scholar]
  14. Freiberg C., Wieland B., Spaltmann F., Ehlert K., Brotz H., Labischinski H. 2001; Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria. J Mol Microbiol Biotechnol 3:483–489
    [Google Scholar]
  15. Galperin M. Y., Koonin E. V. 2004; ‘Conserved hypothetical’ proteins: prioritization of targets for experimental study. Nucleic Acids Res 32:5452–5463
    [Google Scholar]
  16. Gentile F., Amodeo P., Febbraio F., Picaro F., Motta A., Formisano S., Nucci R. 2002; SDS-resistant active and thermostable dimers are obtained from the dissociation of homotetrameric β-glycosidase from hyperthermophilic Sulfolobus solfataricus in SDS. Stabilizing role of the A-C intermonomeric interface. J Biol Chem 277:44050–44060
    [Google Scholar]
  17. Geourjon C., Orelle C., Steinfels E., Blanchet C., Deleage G., Di Pietro A., Jault J. M. 2001; A common mechanism for ATP hydrolysis in ABC transporter and helicase superfamilies. Trends Biochem Sci 26:539–544
    [Google Scholar]
  18. Hu Z., Saez C., Lutkenhaus J. 2003; Recruitment of MinC, an inhibitor of Z-ring formation, to the membrane in Escherichia coli: role of MinD and MinE. J Bacteriol 185:196–203
    [Google Scholar]
  19. Hunt A., Rawlins J. P., Thomaides H. B., Errington J. 2006; Functional analysis of 11 putative essential genes in Bacillus subtilis . Microbiology 152:2895–2907
    [Google Scholar]
  20. Jault J. M., Di Pietro A., Falson P., Gautheron D. C. 1991; Alteration of apparent negative cooperativity of ATPase activity by α-subunit glutamine 173 mutation in yeast mitochondrial F1. Correlation with impaired nucleotide interaction at a regulatory site. J Biol Chem 266:8073–8078
    [Google Scholar]
  21. Kobayashi K., Ehrlich S. D., Albertini A., Amati G., Andersen K. K., Arnaud M., Asai K., Ashikaga S., Aymerich S. other authors 2003; Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683
    [Google Scholar]
  22. Koonin E. V., Wolf Y. I., Aravind L. 2000; Protein fold recognition using sequence profiles and its application in structural genomics. Adv Protein Chem 54:245–275
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  24. Langen H., Takacs B., Evers S., Berndt P., Lahm H. W., Wipf B., Gray C., Fountoulakis M. 2000; Two-dimensional map of the proteome of Haemophilus influenzae . Electrophoresis 21:411–429
    [Google Scholar]
  25. Lerner C. G., Hajduk P. J., Wagner R., Wagenaar F. L., Woodall C., Gu Y. G., Searle X. B., Florjancic A. S., Zhang T. other authors 2007; From bacterial genomes to novel antibacterial agents: discovery, characterization, and antibacterial activity of compounds that bind to HI0065 (YjeE) from Haemophilus influenzae . Chem Biol Drug Des 69:395–404
    [Google Scholar]
  26. Lewis P. J., Thaker S. D., Errington J. 2000; Compartmentalifzation of transcription and translation in Bacillus subtilis . EMBO J 19:710–718
    [Google Scholar]
  27. Lupas A. N., Martin J. 2002; AAA proteins. Curr Opin Struct Biol 12:746–753
    [Google Scholar]
  28. Marston A. L., Thomaides H. B., Edwards D. H., Sharpe M. E., Errington J. 1998; Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12:3419–3430
    [Google Scholar]
  29. Park J., Lappe M., Teichmann S. A. 2001; Mapping protein family interactions: intramolecular and intermolecular protein family interaction repertoires in the PDB and yeast. J Mol Biol 307:929–938
    [Google Scholar]
  30. Peters K., Richards F. M. 1977; Chemical cross-linking: reagents and problems in studies of membrane structure. Annu Rev Biochem 46:523–551
    [Google Scholar]
  31. Prossnitz E., Nikaido K., Ulbrich S. J., Ames G. F. 1988; Formaldehyde and photoactivatable cross-linking of the periplasmic binding protein to a membrane component of the histidine transport system of Salmonella typhimurium . J Biol Chem 263:17917–17920
    [Google Scholar]
  32. Reinstein J., Schlichting I., Wittinghofer A. 1990; Structurally and catalytically important residues in the phosphate binding loop of adenylate kinase of Escherichia coli . Biochemistry 29:7451–7459
    [Google Scholar]
  33. Roberts R. J. 2004; Identifying protein function – a call for community action. PLoS Biol 2:E42
    [Google Scholar]
  34. Saraste M., Sibbald P. R., Wittinghofer A. 1990; The P-loop – a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434
    [Google Scholar]
  35. Schuck P. 2000; Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619
    [Google Scholar]
  36. Shen H., Yao B. Y., Mueller D. M. 1994; Primary structural constraints of P-loop of mitochondrial F1-ATPase from yeast. J Biol Chem 269:9424–9428
    [Google Scholar]
  37. Skare J. T., Ahmer B. M., Seachord C. L., Darveau R. P., Postle K. 1993; Energy transduction between membranes. TonB, a cytoplasmic membrane protein, can be chemically cross-linked in vivo to the outer membrane receptor FepA. J Biol Chem 268:16302–16308
    [Google Scholar]
  38. Speed M. A., Wang D. I., King J. 1995; Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tailspike polypeptide chains. Protein Sci 4:900–908
    [Google Scholar]
  39. Tatusov R. L., Galperin M. Y., Natale D. A., Koonin E. V. 2000; The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36
    [Google Scholar]
  40. Teixeira de Mattos M. J., Neijssel O. M. 1997; Bioenergetic consequences of microbial adaptation to low-nutrient environments. J Biotechnol 59:117–126
    [Google Scholar]
  41. Teplyakov A., Obmolova G., Tordova M., Thanki N., Bonander N., Eisenstein E., Howard A. J., Gilliland G. L. 2002; Crystal structure of the YjeE protein from Haemophilus influenzae: a putative ATPase involved in cell wall synthesis. Proteins 48:220–226
    [Google Scholar]
  42. Tsui H. C., Zhao G., Feng G., Leung H. C., Winkler M. E. 1994; The mutL repair gene of Escherichia coli K-12 forms a superoperon with a gene encoding a new cell-wall amidase. Mol Microbiol 11:189–202
    [Google Scholar]
  43. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
    [Google Scholar]
  44. White R. H. 2006; The difficult road from sequence to function. J Bacteriol 188:3431–3432
    [Google Scholar]
  45. Wong I., Moore K. J., Bjornson K. P., Hsieh J., Lohman T. M. 1996; ATPase activity of Escherichia coli Rep helicase is dramatically dependent on DNA ligation and protein oligomeric states. Biochemistry 35:5726–5734
    [Google Scholar]
  46. Yoshida M., Amano T. 1995; A common topology of proteins catalyzing ATP-triggered reactions. FEBS Lett 359:1–5
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021543-0
Loading
/content/journal/micro/10.1099/mic.0.021543-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error