1887

Abstract

is the most frequently isolated human fungal pathogen among species causing biofilm-related clinical infections. Mechanical properties of biofilms have hitherto been given no attention, despite the fact that mechanical properties are important for selection of treatment or dispersal of biofilm organisms due to a bodily fluid flow. The aim of this study was to identify the factors that determine the compression strength of biofilms. Biofilms of wild-type parental strain Caf2-1, mutant strain Chk24 lacking Chk1p [known to be involved in regulation of morphogenesis (yeast-to-hyphae transition)] and gene-reconstructed strain Chk23 were evaluated for their resistance to compression, along with biofilms of GB 9/9 and GB 2/8, derived from used voice prosthetic biofilms. Additionally, cell morphologies within the biofilm, cell-surface hydrophobicities and extracellular polymeric substance composition were determined. Our results suggest that the hyphae-to-yeast ratio influences the compression strength of biofilms. Biofilms with a hyphal content >50 % possessed significantly higher compressive strength and were more difficult to destroy by vortexing and sonication than biofilms with a lower hyphal content. However, when the amount of extracellular DNA (eDNA) in biofilms of Caf2-1 and Chk24 increased, biofilm strength declined, suggesting that eDNA may influence biofilm integrity adversely.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021568-0
2009-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1997.html?itemId=/content/journal/micro/10.1099/mic.0.021568-0&mimeType=html&fmt=ahah

References

  1. Al-Fattani M. A., Douglas L. J. 2006; Biofilm matrix of Candida albicans and Candida tropicalis : chemical composition and role in drug resistance. J Med Microbiol 55:999–1008
    [Google Scholar]
  2. Baillie G. S., Douglas L. J. 1999; Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 48:671–679
    [Google Scholar]
  3. Baillie G. S., Douglas L. J. 2000; Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 46:397–403
    [Google Scholar]
  4. Baker B. J., Banfield J. F. 2003; Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152
    [Google Scholar]
  5. Battin T. J., Wille A., Sattler B., Psenner R. 2001; Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol 67:799–807
    [Google Scholar]
  6. Beech I. B., Gaylarde C. C. 1999; Recent advances in the study of biocorrosion: an overview. Rev Microbiol 30:177–190
    [Google Scholar]
  7. Berman J., Sudbery P. E. 2002; Candida albicans : a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3:918–930
    [Google Scholar]
  8. Braun P. C., Calderone R. A. 1978; Chitin synthesis in Candida albicans – comparison of yeast and hyphal forms. J Bacteriol 133:1472–1477
    [Google Scholar]
  9. Busscher H. J., Weerkamp A. H., van der Mei H. C., van Pelt A. W. J., de Jong H. P., Arends J. 1984; Measurement of the surface free-energy of bacterial-cell surfaces and its relevance for adhesion. Appl Environ Microbiol 48:980–983
    [Google Scholar]
  10. Calderone R. A. 2002; Taxonomy and biology of Candida. In Candida and Candidiasis pp 15–27 Edited by Calderone R. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Callow M. E., Callow J. A. 2002; Marine biofouling: a sticky problem. Biologist (London 49:10–14
    [Google Scholar]
  12. Chaffin W. L., Lopez-Ribot J. L., Casanova M., Gozalbo D., Martinez J. P. 1998; Cell wall and secreted proteins of Candida albicans : identification, function, and expression. Microbiol Mol Biol Rev 62:130–180
    [Google Scholar]
  13. Chauhan N., Li D. M., Singh P., Calderone R., Kruppa M. 2002; The cell wall of Candida spp. In Candida and Candidiasis pp 159–175 Edited by Calderone R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Chen B. Q., Sun K., Ren T. 2005; Mechanical and viscoelastic properties of chitin fiber reinforced poly(ϵ-caprolactone. Eur Polym J 41:453–457
    [Google Scholar]
  15. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464
    [Google Scholar]
  16. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322
    [Google Scholar]
  17. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298
    [Google Scholar]
  18. Donlan R. M. 2001; Biofilms and device-associated infections. Emerg Infect Dis 7:277–281
    [Google Scholar]
  19. Donlan R. M., Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193
    [Google Scholar]
  20. Douglas L. J. 2003; Candida biofilms and their role in infection. Trends Microbiol 11:30–36
    [Google Scholar]
  21. DuBois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356
    [Google Scholar]
  22. Dunsmore B. C., Jacobsen A., Hall-Stoodley L., Bass C. J., Lappin-Scott H. M., Stoodley P. 2002; The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms. J Ind Microbiol Biotechnol 29:347–353
    [Google Scholar]
  23. Elasri M. O., Miller R. V. 1999; Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol 65:2025–2031
    [Google Scholar]
  24. Flemming H.-C., Wingender J., Mayer C., Korstgens V., Borchard W. 2000; Cohesiveness in biofilm matrix polymers. In Community Structure and Cooperation in Biofilms pp 87–105 Edited by Allison D., Gilbert P., Lappin-Scott H. M., Wilson M. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  25. Hall-Stoodley L., Costerton J. W., Stoodley P. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108
    [Google Scholar]
  26. Hampton A. A., Sherertz R. J. 1988; Vascular-access infections in hospitalized patients. Surg Clin North Am 68:57–71
    [Google Scholar]
  27. Hibbeler R. C. 2000 Mechanics of Materials Upper Saddle River, NJ: Prentice Hall;
  28. Hornby J. M., Jensen E. C., Lisec A. D., Tasto J. J., Jahnke B., Shoemaker R., Dussault P., Nickerson K. W. 2001; Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992
    [Google Scholar]
  29. Korstgens V., Flemming H. C., Wingender J., Borchard W. 2001; Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa . Water Sci Technol 43:49–57
    [Google Scholar]
  30. Krom B. P., Cohen J. B., Feser G. E. M., Cihlar R. L. 2007; Optimized candidal biofilm microtiter assay. J Microbiol Methods 68:421–423
    [Google Scholar]
  31. Krueger K. E., Ghosh A. K., Krom B. P., Cihlar R. L. 2004; Deletion of the NOT4 gene impairs hyphal development and pathogenicity in Candida albicans . Microbiology 150:229–240
    [Google Scholar]
  32. Kruppa M., Krom B. P., Chauhan N., Bambach A. V., Cihlar R. L., Calderone R. A. 2004; The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans . Eukaryot Cell 3:1062–1065
    [Google Scholar]
  33. Kumar C. G., Anand S. K. 1998; Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27
    [Google Scholar]
  34. Lo H. J., Kohler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949
    [Google Scholar]
  35. Moran G. P., Sullivan D. J., Coleman D. C. 2002; Emergence of non- Candida albicans Candida species as pathogens. In Candida and Candidiasis pp 37–53 Edited by Calderone R. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Nemoto K., Hirota K., Murakami K., Taniguti K., Murata H., Viducic D., Miyake Y. 2003; Effect of Varidase (streptodornase) on biofilm formed by Pseudomonas aeruginosa . Chemotherapy 49:121–125
    [Google Scholar]
  37. Odds F. C. 1988 Candida and Candidosis London, UK: Baillier Tindall;
  38. Paramonova E., de Jong E. D., Krom B. P., van der Mei H. C., Busscher H. J., Sharma P. K. 2007; Low-load compression testing: a novel way of measuring biofilm thickness. Appl Environ Microbiol 73:7023–7028
    [Google Scholar]
  39. Richard M. L., Nobile C. J., Bruno V. M., Mitchell A. P. 2005; Candida albicans biofilm-defective mutants. Eukaryot Cell 4:1493–1502
    [Google Scholar]
  40. Shin J. H., Kee S. J., Shin M. G., Kim S. H., Shin D. H., Lee S. K., Suh S. P., Ryang D. W. 2002; Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol 40:1244–1248
    [Google Scholar]
  41. Starkey M., Gray K. A., Chang S. I., Parsek M. R. 2004; A sticky business: the extracellular polymeric substance matrix of bacterial biofilms. In Microbial Biofilms pp 174–191 Edited by Ghannoum M., O'Toole G. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Stewart P. S., Costerton J. W. 2001; Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138
    [Google Scholar]
  43. Stoodley P., Cargo R., Rupp C. J., Wilson S., Klapper I. 2002; Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367
    [Google Scholar]
  44. Whitchurch C. B., Tolker-Nielsen T., Ragas P. C., Mattick J. S. 2002; Extracellular DNA required for bacterial biofilm formation. Science 295:1487
    [Google Scholar]
  45. Wloka M., Rehage H., Flemming H.-C., Wingender J. 2005; Structure and rheological behaviour of the extracellular polymeric substance network of mucoid Pseudomonas aeruginosa biofilms. Biofilms 2:275–283
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021568-0
Loading
/content/journal/micro/10.1099/mic.0.021568-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error