1887

Abstract

is a prevalent cause of food-borne diarrhoeal illness in humans. Understanding of the physiological and metabolic capabilities of the organism is limited. We report a detailed analysis of the growth cycle in batch culture. Combined transcriptomic, phenotypic and metabolic analysis demonstrates a highly dynamic ‘stationary phase’, characterized by a peak in motility, numerous gene expression changes and substrate switching, despite transcript changes that indicate a metabolic downshift upon the onset of stationary phase. Video tracking of bacterial motility identifies peak activity during stationary phase. Amino acid analysis of culture supernatants shows a preferential order of amino acid utilization. Proton NMR (H-NMR) highlights an acetate switch mechanism whereby bacteria change from acetate excretion to acetate uptake, most probably in response to depletion of other substrates. Acetate production requires () and (), although the homologue () is not required. Insertion mutants in and maintain viability less well during the stationary and decline phases of the growth cycle than wild-type , suggesting that these genes, and the acetate pathway, are important for survival.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021790-0
2009-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/80.html?itemId=/content/journal/micro/10.1099/mic.0.021790-0&mimeType=html&fmt=ahah

References

  1. Altman D. G. 1991 Practical Statistics for Medical Research London: Chapman & Hall;
    [Google Scholar]
  2. Atack J. M., Harvey P., Jones M. A., Kelly D. J. 2008; The Campylobacter jejuni thiol peroxidases Tpx and Bcp both contribute to aerotolerance and peroxide-mediated stress resistance but have distinct substrate specificities. J Bacteriol 190:5279–5290
    [Google Scholar]
  3. Baillon M. L., van Vliet A. H., Ketley J. M., Constantinidou C., Penn C. W. 1999; An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni . J Bacteriol 181:4798–4804
    [Google Scholar]
  4. Benjamini Y., Hochberg Y. 1995; Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodological 57:289–300
    [Google Scholar]
  5. Black R. E., Levine M. M., Clements M. L., Hughes T. P., Blaser M. J. 1988; Experimental Campylobacter jejuni infection in humans. J Infect Dis 157:472–479
    [Google Scholar]
  6. Brazma A., Parkinson H., Sarkans U., Shojatalab M., Vilo J., Abeygunawardena N., Holloway E., Kapushesky M., Kemmeren P. other authors 2003; ArrayExpress – a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 31:68–71
    [Google Scholar]
  7. Cairney J., Higgins C. F., Booth I. R. 1984; Proline uptake through the major transport system of Salmonella typhimurium is coupled to sodium ions. J Bacteriol 160:22–27
    [Google Scholar]
  8. Caldwell M. B., Guerry P., Lee E. C., Burans J. P., Walker R. I. 1985; Reversible expression of flagella in Campylobacter jejuni . Infect Immun 50:941–943
    [Google Scholar]
  9. Carrillo C. D., Taboada E., Nash J. H., Lanthier P., Kelly J., Lau P. C., Verhulp R., Mykytczuk O., Sy J. other authors 2004; Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA . J Biol Chem 279:20327–20338
    [Google Scholar]
  10. Chang D. E., Shin S., Rhee J. S., Pan J. G. 1999; Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J Bacteriol 181:6656–6663
    [Google Scholar]
  11. Corcoran A. T., Moran A. P. 2007; Influence of growth conditions on diverse polysaccharide production by Campylobacter jejuni . FEMS Immunol Med Microbiol 49:124–132
    [Google Scholar]
  12. Darnton N., Turner L., Breuer K., Berg H. C. 2004; Moving fluid with bacterial carpets. Biophys J 86:1863–1870
    [Google Scholar]
  13. Del Recio Leon-Kempis M., Guccione E., Mulholland F., Williamson M. P., Kelly D. J. 2006; The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol Microbiol 60:1262–1275
    [Google Scholar]
  14. Dukan S., Nystrom T. 1998; Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev 12:3431–3441
    [Google Scholar]
  15. Dukan S., Nystrom T. 1999; Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J Biol Chem 274:26027–26032
    [Google Scholar]
  16. Ernst J., Bar-Joseph Z. 2006; STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7:191
    [Google Scholar]
  17. Ernst J., Nau G. J., Bar-Joseph Z. 2005; Clustering short time series gene expression data. Bioinformatics 21 :Suppl. 1i159–i168
    [Google Scholar]
  18. Fredriksson A., Ballesteros M., Dukan S., Nystrom T. 2005; Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. J Bacteriol 187:4207–4213
    [Google Scholar]
  19. Gaynor E. C., Cawthraw S., Manning G., MacKichan J. K., Falkow S., Newell D. G. 2004; The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol 186:503–517
    [Google Scholar]
  20. Gaynor E. C., Wells D. H., MacKichan J. K., Falkow S. 2005; The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol Microbiol 56:8–27
    [Google Scholar]
  21. Gillespie I. A., O'Brien S. J., Frost J. A., Adak G. K., Horby P., Swan A. V., Painter M. J., Neal K. R. 2002; A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: a tool for generating hypotheses. Emerg Infect Dis 8:937–942
    [Google Scholar]
  22. Grant A. J., Coward C., Jones M. A., Woodall C. A., Barrow P. A., Maskell D. J. 2005; Signature-tagged transposon mutagenesis studies demonstrate the dynamic nature of cecal colonization of 2-week-old chickens by Campylobacter jejuni . Appl Environ Microbiol 71:8031–8041
    [Google Scholar]
  23. Guccione E., Del Rocio Leon-Kempis M., Pearson B. M., Hitchin E., Mulholland F., van Diemen P. M., Stevens M. P., Kelly D. J. 2008; Amino acid-dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Mol Microbiol 69:77–93
    [Google Scholar]
  24. Guerry P. 2007; Campylobacter flagella: not just for motility. Trends Microbiol 15:456–461
    [Google Scholar]
  25. Guerry P., Ewing C. P., Schirm M., Lorenzo M., Kelly J., Pattarini D., Majam G., Thibault P., Logan S. 2006; Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60:299–311
    [Google Scholar]
  26. Hazeleger W. C., Janse J. D., Koenraad P. M., Beumer R. R., Rombouts F. M., Abee T. 1995; Temperature-dependent membrane fatty acid and cell physiology changes in coccoid forms of Campylobacter jejuni . Appl Environ Microbiol 61:2713–2719
    [Google Scholar]
  27. He Y., Frye J. G., Strobaugh T. P., Chen C. Y. 2008; Analysis of AI-2/LuxS-dependent transcription in Campylobacter jejuni strain 81–176. Foodborne Pathog Dis 5:399–415
    [Google Scholar]
  28. Hendrixson D. R., DiRita V. J. 2003; Transcription of σ 54-dependent but not σ 28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50:687–702
    [Google Scholar]
  29. Jaffe J. D., Miyata M., Berg H. C. 2004; Energetics of gliding motility in Mycoplasma mobile . J Bacteriol 186:4254–4261
    [Google Scholar]
  30. Jangannathan A., Penn C. 2005; Motility. In Campylobacter: Molecular and Cellular Biology pp 331–347 Edited by Ketley J. M., Konkel M. E. Wymondham, Norfolk, UK: Horizon Bioscience;
    [Google Scholar]
  31. Jenkins D. E., Auger E. A., Matin A. 1991; Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival. J Bacteriol 173:1992–1996
    [Google Scholar]
  32. Jones M. A., Marston K. L., Woodall C. A., Maskell D. J., Linton D., Karlyshev A. V., Dorrell N., Wren B. W., Barrow P. A. 2004; Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. Infect Immun 72:3769–3776
    [Google Scholar]
  33. Joshua G. W., Guthrie-Irons C., Karlyshev A. V., Wren B. W. 2006; Biofilm formation in Campylobacter jejuni . Microbiology 152:387–396
    [Google Scholar]
  34. Kalmokoff M., Lanthier P., Tremblay T. L., Foss M., Lau P. C., Sanders G., Austin J., Kelly J., Szymanski C. M. 2006; Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188:4312–4320
    [Google Scholar]
  35. Kamal N., Dorrell N., Jagannathan A., Turner S. M., Constantinidou C., Studholme D. J., Marsden G., Hinds J., Laing K. G. other authors 2007; Deletion of a previously uncharacterized flagellar-hook-length control gene fliK modulates the σ 54-dependent regulon in Campylobacter jejuni . Microbiology 153:3099–3111
    [Google Scholar]
  36. Karim Q. N., Logan R. P., Puels J., Karnholz A., Worku M. L. 1998; Measurement of motility of Helicobacter pylori, Campylobacter jejuni, and Escherichia coli by real time computer tracking using the Hobson BacTracker. J Clin Pathol 51:623–628
    [Google Scholar]
  37. Karlyshev A. V., Linton D., Gregson N. A., Wren B. W. 2002; A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni . Microbiology 148:473–480
    [Google Scholar]
  38. Kelly D. J. 2001; The physiology and metabolism of Campylobacter jejuni and Helicobacter pylori . Symp Ser Soc Appl Microbiol 30:16S–24S
    [Google Scholar]
  39. Kelly D. J. 2005; Metabolism, electron transport and bioenergetics of Campylobacter jejuni: implications for understanding life in the gut and survival in the environment. In Campylobacter: Molecular and Cellular Biology pp 275–292 Edited by Ketley J. M., Konkel M. E. Wymondham, Norfolk, UK: Horizon Bioscience;
    [Google Scholar]
  40. Kelly A. F., Park S. F., Bovill R., Mackey B. M. 2001; Survival of Campylobacter jejuni during stationary phase: evidence for the absence of a phenotypic stationary-phase response. Appl Environ Microbiol 67:2248–2254
    [Google Scholar]
  41. Kiggins E. M., Plastridge W. N. 1958; Some metabolic activities of Vibrio fetus of bovine origin. J Bacteriol 75:205–208
    [Google Scholar]
  42. Klanĉnik A., Botteldoorn L., Herman L., Možina S. S. 2006; Survival and stress induced expression of groEL and rpoD of Campylobacter jejuni from different growth phases. Int J Food Microbiol 112:200–207
    [Google Scholar]
  43. Konkel M. E., Klena J. D., Rivera-Amill V., Monteville M. R., Biswas D., Raphael B., Mickelson J. 2004; Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol 186:3296–3303
    [Google Scholar]
  44. Leach S., Harvey P., Wali R. 1997; Changes with growth rate in the membrane lipid composition of and amino acid utilization by continuous cultures of Campylobacter jejuni . J Appl Microbiol 82:631–640
    [Google Scholar]
  45. Martinez-Rodriguez A., Kelly A. F., Park S. F., Mackey B. M. 2004; Emergence of variants with altered survival properties in stationary phase cultures of Campylobacter jejuni . Int J Food Microbiol 90:321–329
    [Google Scholar]
  46. Mendz G. L., Ball G. E., Meek D. J. 1997; Pyruvate metabolism in Campylobacter spp. Biochim Biophys Acta 1334291–302
    [Google Scholar]
  47. Mohammed K. A., Miles R. J., Halablab M. A. 2005; Simple method to grow enteric campylobacters in unsupplemented liquid medium without the need for microaerophilic kits. J Microbiol Methods 61:273–276
    [Google Scholar]
  48. Morooka T., Umeda A., Amako K. 1985; Motility as an intestinal colonization factor for Campylobacter jejuni . J Gen Microbiol 131:1973–1980
    [Google Scholar]
  49. Murphy C., Carroll C., Jordan K. N. 2003; Induction of an adaptive tolerance response in the foodborne pathogen, Campylobacter jejuni . FEMS Microbiol Lett 223:89–93
    [Google Scholar]
  50. Murphy C., Carroll C., Jordan K. N. 2005; The effect of different media on the survival and induction of stress responses by Campylobacter jejuni . J Microbiol Methods 62:161–166
    [Google Scholar]
  51. Nachamkin I., Yang X. H., Stern N. J. 1993; Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl Environ Microbiol 59:1269–1273
    [Google Scholar]
  52. Nachamkin I., Allos B. M., Ho T. W. 2000; Campylobacter jejuni infection and the association with Guillain–Barré syndrome. In Campylobacter pp 155–175 Edited by Nachamkin I., Blaser M. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  53. Nuijten P. J., van den Berg A. J., Formentini I., van der Zeijst B. A., Jacobs A. A. 2000; DNA rearrangements in the flagellin locus of an flaA mutant of Campylobacter jejuni during colonization of chicken ceca. Infect Immun 68:7137–7140
    [Google Scholar]
  54. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T. other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668
    [Google Scholar]
  55. Petersen L., Larsen T. S., Ussery D. W., On S. L., Krogh A. 2003; RpoD promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a −35 box. J Mol Biol 326:1361–1372
    [Google Scholar]
  56. Pfaffl M. W. 2001; A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45
    [Google Scholar]
  57. Pittman M. S., Kelly D. J. 2005; Electron transport through nitrate and nitrite reductases in Campylobacter jejuni . Biochem Soc Trans 33:190–192
    [Google Scholar]
  58. Purdy D., Cawthraw S., Dickinson J. H., Newell D. G., Park S. F. 1999; Generation of a superoxide dismutase (SOD)-deficient mutant of Campylobacter coli: evidence for the significance of SOD in Campylobacter survival and colonization. Appl Environ Microbiol 65:2540–2546
    [Google Scholar]
  59. Rollins D. M., Coolbaugh J. C., Walker R. I., Weiss E. 1983; Biphasic culture system for rapid Campylobacter cultivation. Appl Environ Microbiol 45:284–289
    [Google Scholar]
  60. Rozen S., Skaletsky H. 2000; Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
    [Google Scholar]
  61. Sellars M. J., Hall S. J., Kelly D. J. 2002; Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine- N-oxide, or dimethyl sulfoxide requires oxygen. J Bacteriol 184:4187–4196
    [Google Scholar]
  62. Siegenthaler R. K., Christen P. 2005; The importance of having thermosensor control in the DnaK chaperone system. J Biol Chem 280:14395–14401
    [Google Scholar]
  63. Smibert R. M. 1978; The genus Campylobacter . Annu Rev Microbiol 32:673–709
    [Google Scholar]
  64. Smith M. A., Mendz G. L., Jorgensen M. A., Hazell S. L. 1999; Fumarate metabolism and the microaerophily of Campylobacter species. Int J Biochem Cell Biol 31:961–975
    [Google Scholar]
  65. Stintzi A., Marlow D., Palyada K., Naikare H., Panciera R., Whitworth L., Clarke C. 2005; Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni . Infect Immun 73:1797–1810
    [Google Scholar]
  66. Tang Y. C., Chang H. C., Roeben A., Wischnewski D., Wischnewski N., Kerner M. J., Hartl F. U., Hayer-Hartl M. 2006; Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125:903–914
    [Google Scholar]
  67. Thomas C., Hill D. J., Mabey M. 1999; Morphological changes of synchronized Campylobacter jejuni populations during growth in single phase liquid culture. Lett Appl Microbiol 28:194–198
    [Google Scholar]
  68. Thompson L. J., Merrell D. S., Neilan B. A., Mitchell H., Lee A., Falkow S. 2003; Gene expression profiling of Helicobacter pylori reveals a growth-phase-dependent switch in virulence gene expression. Infect Immun 71:2643–2655
    [Google Scholar]
  69. Townsend J. P. 2003; Multifactorial experimental design and the transitivity of ratios with spotted DNA microarrays. BMC Genomics 4:41
    [Google Scholar]
  70. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. 2002; Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034
    [Google Scholar]
  71. van Vliet A. H., Baillon M. L., Penn C. W., Ketley J. M. 1999; Campylobacter jejuni contains two Fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol 181:6371–6376
    [Google Scholar]
  72. Velayudhan J., Kelly D. J. 2002; Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148:685–694
    [Google Scholar]
  73. Velayudhan J., Jones M. A., Barrow P. A., Kelly D. J. 2004; l-Serine catabolism via an oxygen-labile l-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni . Infect Immun 72:260–268
    [Google Scholar]
  74. Wassenaar T. M., van der Zeijst B. A., Ayling R., Newell D. G. 1993; Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J Gen Microbiol 139:1171–1175
    [Google Scholar]
  75. Weerakoon D. R., Olson J. W. 2008; The Campylobacter jejuni NADH : ubiquinone oxidoreductase (complex I) utilizes flavodoxin rather than NADH. J Bacteriol 190:915–925
    [Google Scholar]
  76. Wolfe A. J. 2005; The acetate switch. Microbiol Mol Biol Rev 69:12–50
    [Google Scholar]
  77. Woodall C. A., Jones M. A., Barrow P. A., Hinds J., Marsden G. L., Kelly D. J., Dorrell N., Wren B. W., Maskell D. J. 2005; Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect Immun 73:5278–5285
    [Google Scholar]
  78. Wu Y. L., Lee L. H., Rollins D. M., Ching W. M. 1994; Heat shock- and alkaline pH-induced proteins of Campylobacter jejuni: characterization and immunological properties. Infect Immun 62:4256–4260
    [Google Scholar]
  79. Young K. T., Davis L. M., Dirita V. J. 2007; Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5:665–679
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021790-0
Loading
/content/journal/micro/10.1099/mic.0.021790-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error