1887

Abstract

is an important Gram-negative enteric pathogen affecting both animals and humans. It possesses a type III secretion system (T3SS) essential for pathogenesis. EseB, EseC and EseD have been shown to form a translocon complex after secretion, while EscC functions as a T3SS chaperone for EseB and EseD. In this paper we identify EscA, a protein required for accumulation and proper secretion of another translocon component, EseC. The gene is located upstream of and the EscA protein has the characteristics of T3SS chaperones. Cell fractionation experiments indicated that EscA is located in the cytoplasm and on the cytoplasmic membrane. Mutation with in-frame deletion of greatly decreased the secretion of EseC, while complementation of restored the wild-type secretion phenotype. The stabilization and accumulation of EseC in the cytoplasm were also affected in the absence of EscA. Mutation of did not affect the transcription of but reduced the accumulation level of EseC as measured by using an EseC-LacZ fusion protein in . Co-purification and co-immunoprecipitation studies demonstrated a specific interaction between EscA and EseC. Further analysis showed that residues 31–137 of EseC are required for EseC-EscA interaction. Mutation of EseC residues 31–137 reduced the secretion and accumulation of EseC in . Finally, infection experiments showed that mutations of EscA and residues 31–137 of EseC increased the LD by approximately 10-fold in blue gourami fish. These results indicated that EscA functions as a specific chaperone for EseC and contributes to the virulence of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021865-0
2009-04-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1260.html?itemId=/content/journal/micro/10.1099/mic.0.021865-0&mimeType=html&fmt=ahah

References

  1. Akeda Y., Galán J. E. 2005; Chaperone release and unfolding of substrates in type III secretion. Nature 437:911–915
    [Google Scholar]
  2. Beuzón C. R., Banks G., Deiwick J., Hensel M., Holden D. W. 1999; pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella typhimurium . Mol Microbiol 33:806–816
    [Google Scholar]
  3. Bröms J. E., Forslund A. L., Forsberg A., Francis M. S. 2003; PcrH of Pseudomonas aeruginosa is essential for secretion and assembly of the type III translocon. J Infect Dis 188:1909–1921
    [Google Scholar]
  4. Bröms J. E., Edqvist P. J., Forsberg A., Francis M. S. 2006; Tetratricopeptide repeats are essential for PcrH chaperone function in Pseudomonas aeruginosa type III secretion. FEMS Microbiol Lett 256:57–66
    [Google Scholar]
  5. Büttner D., Bonas U. 2002; Port of entry – the type III secretion translocon. Trends Microbiol 10:186–192
    [Google Scholar]
  6. Büttner C. R., Sorg I., Cornelis G. R., Heinz D. W., Niemann H. H. 2008; Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD. J Mol Biol 375:997–1012
    [Google Scholar]
  7. Chen J. D., Lai S. Y., Huang S. L. 1996; Molecular cloning, characterization, and sequencing of the hemolysin gene from Edwardsiella tarda . Arch Microbiol 165:9–17
    [Google Scholar]
  8. Cook R. A., Tappe J. P. 1985; Chronic enteritis associated with Edwardsiella tarda infection in Rockhopper penguins. J Am Vet Med Assoc 187:1219–1220
    [Google Scholar]
  9. Cornelis G. R., Van Gijsegem F. 2000; Assembly and function of type III secretory systems. Annu Rev Microbiol 54:735–774
    [Google Scholar]
  10. Daniell S. J., Delahay R. M., Shaw R. K., Hartland E. L., Pallen M. J., Booy F., Ebel F., Knutton S., Frankel G. 2001; Coiled-coil domain of enteropathogenic Escherichia coli type III secreted protein EspD is involved in EspA filament-mediated cell attachment and hemolysis. Infect Immun 69:4055–4064
    [Google Scholar]
  11. Daniell S. J., Kocsis E., Morris E., Knutton S., Booy F. P., Frankel G. 2003; 3D structure of EspA filaments from enteropathogenic Escherichia coli . Mol Microbiol 49:301–308
    [Google Scholar]
  12. Darwin K. H., Miller V. L. 2001; Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium . EMBO J 20:1850–1862
    [Google Scholar]
  13. Delahay R. M., Frankel G. 2002; Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol Microbiol 45:905–916
    [Google Scholar]
  14. Edqvist P. J., Bröms J. E., Betts H. J., Forsberg A., Pallen M. J., Francis M. S. 2006; Tetratricopeptide repeats in the type-III-secretion chaperone, LcrH: their role in substrate binding and secretion. Mol Microbiol 59:31–44
    [Google Scholar]
  15. Edwards R. A., Keller L. H., Schifferli D. M. 1998; Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207:149–157
    [Google Scholar]
  16. Elliott S. J., Hutcheson S. W., Dubois M. S., Mellies J. L., Wainwright L. A., Batchelor M., Frankel G., Knutton S., Kaper J. B. 1999; Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic Escherichia coli . Mol Microbiol 33:1176–1189
    [Google Scholar]
  17. Evans L. D., Stafford G. P., Ahmed S., Fraser G. M., Hughes C. 2006; An escort mechanism for cycling of export chaperones during flagellum assembly. Proc Natl Acad Sci U S A 103:17474–17479
    [Google Scholar]
  18. Francis M. S., Wolf-Watz H., Forsberg A. 2002; Regulation of type III secretion systems. Curr Opin Microbiol 5:166–172
    [Google Scholar]
  19. Gauthier A., Finlay B. B. 2003; Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli . J Bacteriol 185:6747–6755
    [Google Scholar]
  20. Ghosh P. 2004; Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev 68:771–795
    [Google Scholar]
  21. Goldstein E. J., Agyare E. O., Vagvolgi A. E., Halpern M. 1981; Aerobic bacterial oral flora of garter snakes: development of normal flora and pathogenic potential for snakes and humans. J Clin Microbiol 13:954–956
    [Google Scholar]
  22. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  23. Harrington A. T., Hearn P. D., Picking W. L., Barker J. R., Wessel A., Picking W. D. 2003; Structural characterization of the N terminus of IpaC from Shigella flexneri . Infect Immun 71:1255–1264
    [Google Scholar]
  24. Ide T., Laarmann S., Greune L., Schillers H., Oberleithner H., Schmidt M. A. 2001; Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli . Cell Microbiol 3:669–679
    [Google Scholar]
  25. Jackson M. W., Day J. B., Plano G. V. 1998; YscB of Yersinia pestis functions as a specific chaperone for YopN. J Bacteriol 180:4912–4921
    [Google Scholar]
  26. Janda J. M., Abbott S. L. 1993; Infections associated with the genus Edwardsiella : the role of Edwardsiella tarda in human disease. Clin Infect Dis 17:742–748
    [Google Scholar]
  27. Jones S., Thornton J. M. 1995; Protein-protein interactions: a review of primer dimer structures. Prog Biophys Mol Biol 63:31–65
    [Google Scholar]
  28. Kalogeraki V. S., Winans S. C. 1997; Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188:69–75
    [Google Scholar]
  29. Kourany M., Vasquez M. A., Saenz R. 1977; Edwardsiellosis in man and animals in Panama: clinical and epidemiological characteristics. Am J Trop Med Hyg 26:1183–1190
    [Google Scholar]
  30. Ling S. H., Wang X. H., Xie L., Lim T. M., Leung K. Y. 2000; Use of green fluorescent protein (GFP) to study the invasion pathways of Edwardsiella tarda in in vivo and in vitro fish models. Microbiology 146:7–19
    [Google Scholar]
  31. Macnab R. M. 2003; How bacteria assemble flagella. Annu Rev Microbiol 57:77–100
    [Google Scholar]
  32. Ménard R., Sansonetti P. J., Parsot C., Vasselon T. 1994; Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri . Cell 79:515–525
    [Google Scholar]
  33. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol 170:2575–2583
    [Google Scholar]
  34. Miyazaki S., Kuroda Y., Yokoyama S. 2002; Characterization and prediction of linker sequences of multi-domain proteins by a neural network. J Struct Funct Genomics 2:37–51
    [Google Scholar]
  35. Mo Z. L., Xiao P., Mao Y. X., Zou Y. X., Wang B., Li J., Xu Y. L., Zhang P. J. 2007; Construction and characterization of a live, attenuated esrB mutant of Edwardsiella tarda and its potential as a vaccine against the haemorrhagic septicaemia in turbot, Scophthamus maximus (L.). Fish Shellfish Immunol 23:521–530
    [Google Scholar]
  36. Neves B. C., Mundy R., Petrovska L., Dougan G., Knutton S., Frankel G. 2003; CesD2 of enteropathogenic Escherichia coli is a second chaperone for the type III secretion translocator protein EspD. Infect Immun 71:2130–2141
    [Google Scholar]
  37. Neyt C., Cornelis G. R. 1999; Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD. Mol Microbiol 31:143–156
    [Google Scholar]
  38. Nikolaus T., Deiwichm J., Rappl C., Freeman J. A., Schröder W., Miller S. I., Hensel M. 2001; SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a translocon. J Bacteriol 183:6036–6045
    [Google Scholar]
  39. Olsson J., Edqvist P. J., Bröms J. E., Forsberg A., Wolf-Watz H., Francis M. S. 2004; The YopD translocator of Yersinia pseudotuberculosis is a multifunctional protein comprised of discrete domains. J Bacteriol 186:4110–4123
    [Google Scholar]
  40. Page A. L., Parsot C. 2002; Chaperones of the type III secretion pathway: jacks of all trades. Mol Microbiol 46:1–11
    [Google Scholar]
  41. Pallen M. J., Beatson S. A., Bailey C. M. 2005; Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective. FEMS Microbiol Rev 29:201–229
    [Google Scholar]
  42. Parsot C., Hamiaux C., Page A. L. 2003; The various and varying roles of specific chaperones in type III secretion systems. Curr Opin Microbiol 6:7–14
    [Google Scholar]
  43. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent end points. Am J Hyg 27:493–497
    [Google Scholar]
  44. Rubirés X., Saigi F., Piqué N., Climent N., Merino S., Albertí S., Tomás J. M., Regué M. 1997; A gene ( wbbL ) from Serratia marcescens N28b (O4) complements the rfb-50 mutation of Escherichia coli K-12 derivatives. J Bacteriol 179:7581–7586
    [Google Scholar]
  45. Sae-Oui D., Muroga K., Nakai T. 1984; A case of Edwardsiella tarda infection in cultured colored carp Cyprinus carpio . Fish Pathol 19:197–199
    [Google Scholar]
  46. Saier M. H. Jr 2004; Evolution of bacterial type III protein secretion systems. Trends Microbiol 12:113–115
    [Google Scholar]
  47. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  48. Srinivasa Rao P. S., Lim T. M., Leung K. Y. 2001; Opsonized virulent Edwardsiella tarda strains are able to adhere to and survive and replicate within fish phagocytes but fail to stimulate reactive oxygen intermediates. Infect Immun 69:5689–5697
    [Google Scholar]
  49. Srinivasa Rao P. S., Yamada Y., Leung K. Y. 2003; A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda . Microbiology 149:2635–2644
    [Google Scholar]
  50. Srinivasa Rao P. S., Yamada Y., Tan Y. P., Leung K. Y. 2004; Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol 53:573–586
    [Google Scholar]
  51. Tan Y. P., Zheng J., Tung S. L., Rosenshine I., Leung K. Y. 2005; Role of type III secretion in Edwardsiella tarda virulence. Microbiology 151:2301–2313
    [Google Scholar]
  52. Thomas J., Stafford G. P., Hughes C. 2004; Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc Natl Acad Sci U S A 101:3945–3950
    [Google Scholar]
  53. Thomas N. A., Deng W., Puente J. L., Frey E. A., Yip C. K., Strynadka N. C., Finlay B. B. 2005; CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenic Escherichia coli . Mol Microbiol 57:1762–1779
    [Google Scholar]
  54. Thune R. L., Stanley L. A., Cooper R. K. 1993; Pathogenesis of gram-negative bacterial infections in warm water fish. Annu Rev Fish Dis 3:37–68
    [Google Scholar]
  55. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354
    [Google Scholar]
  56. Tucker S. C., Galán J. E. 2000; Complex function for SicA, a Salmonella enterica serovar Typhimurium type III secretion-associated chaperone. J Bacteriol 182:2262–2268
    [Google Scholar]
  57. Wainwright L. A., Kaper J. B. 1998; EspB and EspD require a specific chaperone for proper secretion from enteropathogenic E. coli . Mol Microbiol 27:1247–1260
    [Google Scholar]
  58. Waterman S. R., Holden D. W. 2003; Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5:501–511
    [Google Scholar]
  59. Yang C. H., Wang C. K. 1999; Edwardsiella tarda bacteraemia complicated by acute pancreatitis and pyomyoma. J Infect 38:124–126
    [Google Scholar]
  60. Zheng J., Leung K. Y. 2007; Dissection of a type VI secretion system in Edwardsiella tarda . Mol Microbiol 66:1192–1206
    [Google Scholar]
  61. Zheng J., Li N., Tan Y. P., Sivaraman J., Mok Y. K., Mo Z. L., Leung K. Y. 2007; EscC is a chaperone for the Edwardsiella tarda T3SS putative translocon components EseB and EseD. Microbiology 153:1953–1962
    [Google Scholar]
  62. Zurawski D. V., Stein M. A. 2003; SseA acts as the chaperone for the SseB component of the Salmonella pathogenicity island 2 translocon. Mol Microbiol 47:1341–1351
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021865-0
Loading
/content/journal/micro/10.1099/mic.0.021865-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error