1887

Abstract

In , motility and chemotaxis require the expression of , which encodes flagellin. This gene is transcribed by the form of RNA polymerase and is regulated by a group of proteins called transition state regulators (TSRs). Our studies show that transcription is negatively regulated by the transition state regulator ScoC, by binding to its promoter. Furthermore, ScoC, indirectly, also positively regulates by increasing the availability of by downregulating the levels of the anti- -factor FlgM. We further show that the positive regulation by ScoC predominates over the negative regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021899-0
2009-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/142.html?itemId=/content/journal/micro/10.1099/mic.0.021899-0&mimeType=html&fmt=ahah

References

  1. Bergara F., Ibarra C., Iwamasa J., Patarroyo J. C., Aguilera R., Marquez-Magana L. M. 2003; CodY is a nutritional repressor of flagellar gene expression in Bacillus subtilis . J Bacteriol 185:3118–3126
    [Google Scholar]
  2. Bertero M. G., Gonzales B., Tarricone C., Ceciliani F., Galizzi A. 1999; Overproduction and characterization of the Bacillus subtilis anti-sigma factor FlgM. J Biol Chem 274:12103–12107
    [Google Scholar]
  3. Bron S. 1990; Plasmids.. In Molecular Biological Methods for Bacillus pp 75–139 Edited by Harwood C. R., Cutting S. M. New York: Wiley;
    [Google Scholar]
  4. Bruckner R. 1992; A series of shuttle vectors for Bacillus subtilis and Escherichia coli . Gene 122:187–192
    [Google Scholar]
  5. Caldwell R., Sapolsky R., Weyler W., Maile R. R., Causey S. C., Ferrari E. 2001; Correlation between Bacillus subtilis scoC phenotype and gene expression determined using microarrays for transcriptome analysis. J Bacteriol 183:7329–7340
    [Google Scholar]
  6. Draghici S., Khatri P., Eklund A. C., Szallasi Z. 2006; Reliability and reproducibility issues in DNA microarray measurements. Trends Genet 22:101–109
    [Google Scholar]
  7. Fisher S. H. 1999; Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference!. Mol Microbiol 32:223–232
    [Google Scholar]
  8. Fredrick K., Helmann J. D. 1996; FlgM is a primary regulator of σ D activity, and its absence restores motility to a sinR mutant. J Bacteriol 178:7010–7013
    [Google Scholar]
  9. Hecker M., Volker U. 1998; Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the σ B regulon. Mol Microbiol 29:1129–1136
    [Google Scholar]
  10. Helmann J. D. 1999; Anti-sigma factors. Curr Opin Microbiol 2:135–141
    [Google Scholar]
  11. Henner D. J., Ferrari E., Perego M., Hoch J. A. 1988; Location of the targets of the hpr-97, sacU32(Hy), and sacQ36(Hy) mutations in upstream regions of the subtilisin promoter. J Bacteriol 170:296–300
    [Google Scholar]
  12. Hughes K. T., Mathee K. 1998; The anti-sigma factors. Annu Rev Microbiol 52:231–286
    [Google Scholar]
  13. Kallio P. T., Fagelson J. E., Hoch J. A., Strauch M. A. 1991; The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J Biol Chem 266:13411–13417
    [Google Scholar]
  14. Kodgire P., Dixit M., Rao K. K. 2006; ScoC and SinR negatively regulate epr by corepression in Bacillus subtilis . J Bacteriol 188:6425–6428
    [Google Scholar]
  15. Kothapalli R., Yoder S. J., Mane S., Loughran T. P. Jr 2002; Microarray results: how accurate are they?. BMC Bioinformatics 3:22
    [Google Scholar]
  16. Liu J., Zuber P. 1998; A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control σ D-dependent gene expression in Bacillus subtilis . J Bacteriol 180:4243–4251
    [Google Scholar]
  17. Mirel D. B., Chamberlin M. J. 1989; The Bacillus subtilis flagellin gene ( hag) is transcribed by the σ 28 form of RNA polymerase. J Bacteriol 171:3095–3101
    [Google Scholar]
  18. Mirel D. B., Lauer P., Chamberlin M. J. 1994; Identification of flagellar synthesis regulatory and structural genes in a σ D-dependent operon of Bacillus subtilis . J Bacteriol 176:4492–4500
    [Google Scholar]
  19. Mirel D. B., Estacio W. F., Mathieu M., Olmsted E., Ramirez J., Marquez-Magana L. M. 2000; Environmental regulation of Bacillus subtilis σ D-dependent gene expression. J Bacteriol 182:3055–3062
    [Google Scholar]
  20. Nicholson W. L., Setlow P. 1990; Sporulation, germination, and outgrowth. In Molecular Biological Methods for Bacillus pp 442–444 Edited by Harwood C. R., Cutting S. M. New York: Wiley;
    [Google Scholar]
  21. Ordal G. W., Márquez-Magaña L. M., Chamberlin M. J. 1993; Motility and Chemotaxis. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp 765–784 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Perego M., Hoch J. A. 1988; Sequence analysis and regulation of the hpr locus, a regulatory gene for protease production and sporulation in Bacillus subtilis . J Bacteriol 170:2560–2567
    [Google Scholar]
  23. Ratnayake-Lecamwasam M., Serror P., Wong K. W., Sonenshein A. L. 2001; Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev 15:1093–1103
    [Google Scholar]
  24. Sambrook J., Fritsh E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Shafikhani S. H., Mandic-Mulec I., Strauch M. A., Smith I., Leighton T. 2002; Postexponential regulation of sin operon expression in Bacillus subtilis . J Bacteriol 184:564–571
    [Google Scholar]
  26. Smith I. 1993; Regulatory proteins that control late-growth developement. . In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp 785–800 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Steinmetz M., Richter R. 1994; Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene 142:79–83
    [Google Scholar]
  28. Strauch M. A., Hoch J. A. 1992; Control of postexponential gene expression by transition state regulators. In Biology of Bacilli: Application to Industry pp 105–121 Edited by Doi R. H., McGloughlin M. Stoneham, MA: Butterworth-Heinemann;
    [Google Scholar]
  29. Strauch M. A., Hoch J. A. 1993; Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol 7:337–342
    [Google Scholar]
  30. Strauch M. A., Spiegelman G. B., Perego M., Johnson W. C., Burbulys D., Hoch J. A. 1989; The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J 8:1615–1621
    [Google Scholar]
  31. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis . Microbiology 144:3097–3104
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021899-0
Loading
/content/journal/micro/10.1099/mic.0.021899-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error