1887

Abstract

An mutant derivative of Sp245 (strain SK586) that encodes an alkyl hydroperoxide reductase was found to be more sensitive to oxidative stress caused by organic hydroperoxides compared with the wild-type. In addition, the mutant strain had multiple defects in a large array of cellular functions that were consistent with alteration of cell-surface properties, such as cell morphology in stationary phase, Calcofluor White-, Congo Red- and lectin-binding abilities, as well as cell-to-cell aggregation and flocculation. All phenotypes of the mutant were complemented by expression of AhpC, and overexpression of AhpC in the wild-type strain was found to affect the same set of phenotypes, suggesting that the pleiotropic effects were caused by the mutation. SK586 was also found to be fully motile, but it lost motility at a higher rate than the wild-type during growth, such that most SK586 cells were non-motile in stationary phase. Despite these defects, the mutant did not differ from the wild-type in short-term colonization of sterile wheat roots when inoculated alone, and in competition with the wild-type strain; this implied that AhpC activity may not endow the cells with a competitive advantage in colonization under these conditions. Although the exact function of AhpC in affecting these phenotypes remains to be determined, changes in cell morphology, surface properties, cell-to-cell aggregation and flocculation are common adaptive responses to various stresses in bacteria, and the data obtained here suggest that AhpC contributes to modulating such stress responses in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022541-0
2009-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1192.html?itemId=/content/journal/micro/10.1099/mic.0.022541-0&mimeType=html&fmt=ahah

References

  1. Alexandre G., Bally R., Taylor B. L., Zhulin I. B. 1999; Loss of cytochrome c oxidase activity and acquisition of resistance to quinone analogs in a laccase-positive variant of Azospirillum lipoferum . J Bacteriol 181:6730–6738
    [Google Scholar]
  2. Alm R. A., Ling L. L., Moir D. T., King B. L., Brown E. D., Doig P. C., Smith D. R., Noonan B., Guild B. C. other authors 1999; Genomic sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori . Nature 397:176–180
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  4. Amsler C. D., Cho M., Matsumura P. 1993; Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J Bacteriol 175:6238–6244
    [Google Scholar]
  5. Antelmann H., Engelmann S., Schmid R., Hecker M. 1996; General and oxidative stress responses in Bacillus subtilis : cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J Bacteriol 178:6571–6578
    [Google Scholar]
  6. Bahat-Samet E., Castro-Sowinski S., Okon Y. 2004; Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirillum brasilense . FEMS Microbiol Lett 237:195–203
    [Google Scholar]
  7. Baldani V. L. D., Baldani J. I., Dobereiner J. 1983; Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can J Microbiol 29:924–929
    [Google Scholar]
  8. Barak R., Nur I., Okon Y., Henis Y. 1982; Aerotactic response of Azospirillum brasilense . J Bacteriol 152:643–649
    [Google Scholar]
  9. Bible A. N., Stephens B. B., Ortega D. R., Xie Z., Alexandre G. 2008; Function of a chemotaxis-like signal transduction pathway in modulating motility, cell clumping, and cell length in the alphaproteobacterium Azospirillum brasilense . J Bacteriol 190:6365–6375
    [Google Scholar]
  10. Burdman S., Jurkevitch E., Soria-Diaz M. E., Gil Serrano A. M., Okon Y. 1998; Aggregation of Azospirillum brasilense : effects of chemical and physical factors and involvement of extracellular components. Microbiology 144:1989–1999
    [Google Scholar]
  11. Burdman S., Okon Y., Jurkevitch E. 2000; Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26:91–110
    [Google Scholar]
  12. Charoenlap N., Eiamphungporn W., Chauvatcharin N., Utamapongchai S., Vattanaviboon P., Mongkolsuk S. 2005; OxyR mediated compensatory expression between ahpC and katA and the significance of ahpC in protection from hydrogen peroxide in Xanthomonas campestris . FEMS Microbiol Lett 249:73–78
    [Google Scholar]
  13. Chowdhury S. P., Nagarajan T., Tripathi R., Mishra M. N., Le Rudulier D., Tripathi A. K. 2006; Strain-specific salt tolerance and osmoregulatory mechanisms in Azospirillum brasilense . FEMS Microbiol Lett 267:72–79
    [Google Scholar]
  14. Clara R. W., Knowles R. 1984; Superoxide dismutase, catalase, and peroxidase in ammonium-grown and nitrogen-fixing Azospirillum brasilense . Can J Microbiol 30:1222–1228
    [Google Scholar]
  15. Del Gallo M. M., Negi M., Neyra C. A. 1989; Calcofluor and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum . J Bacteriol 171:3504–3510
    [Google Scholar]
  16. Fellay R., Krisch H. M., Prentki P., Frey J. 1989; Omegon-Km: a transposable element designed for in vivo insertional mutagenesis and cloning of genes in Gram-negative bacteria. Gene 76:215–226
    [Google Scholar]
  17. Foster J. W. 2000; Microbial responses to acid stress. In Bacterial Stress Responses pp 99–115 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Greer-Phillips S. E., Stephens B. B., Alexandre G. 2004; An energy taxis transducer promotes root colonization by Azospirillum brasilense . J Bacteriol 186:6595–6604
    [Google Scholar]
  19. Ishikawa J., Hotta K. 1999; FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content. FEMS Microbiol Lett 174:251–253
    [Google Scholar]
  20. Jacobson F. S., Morgan R. W., Christman M. F., Ames B. N. 1989; An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem 264:1488–1496
    [Google Scholar]
  21. Johnson N. A., Liu Y., Fletcher H. M. 2004; Alkyl hydroperoxide peroxidase subunit C (ahpC ) protects against organic peroxides but does not affect the virulence of Porphyromonas gingivalis W83. Oral Microbiol Immunol 19:233–239
    [Google Scholar]
  22. Katupitiya S., Millet J., Vesk M., Viccars L., Zeman A., Lidong Z., Elmerich C., Kennedy I. R. 1995; A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat. Appl Environ Microbiol 61:1987–1995
    [Google Scholar]
  23. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197
    [Google Scholar]
  24. LeBlanc J. J., Davidson R. J., Hoffman P. S. 2006; Compensatory functions of two alkyl hydroperoxide reductases in the oxidative defense system of Legionella pneumophila . J Bacteriol 188:6235–6244
    [Google Scholar]
  25. Li C., Louise C. J., Shi W., Adler J. 1993; Adverse conditions which cause lack of flagella in Escherichia coli . J Bacteriol 175:2229–2235
    [Google Scholar]
  26. Loprasert S., Atichartpongkun S., Whangsuk W., Mongkolsuk S. 1997; Isolation and analysis of the Xanthomonas alkyl hydroperoxide reductase gene and the peroxide sensor regulator genes ahpC and ahpF–oxyR–orfX . J Bacteriol 179:3944–3949
    [Google Scholar]
  27. Lundström A. M., Bölin I. 2000; A 26 kDa protein of Helicobacter pylori shows alkyl hydroperoxide reductase (AhpC) activity and the mono-cistronic transcription of the gene is affected by pH. Microb Pathog 29:257–266
    [Google Scholar]
  28. Maurer L. M., Yohannes E., Bondurant S. S., Radmacher M., Slonczewski J. L. 2005; pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187:304–319
    [Google Scholar]
  29. Michiels K., Croes C. L., Vanderleyden J. 1991; Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137:2241–2246
    [Google Scholar]
  30. Mongkolsuk S., Loprasert S., Whangsuk W., Fuangthong M., Atichartpongkun S. 1997; Characterization of transcription organization and analysis of unique expression patterns of an alkyl hydroperoxide reductase C gene ( ahpC ) and the peroxide regulator operon ahpF oxyR orfX from Xanthomonas campestris pv. phaseoli . J Bacteriol 179:3950–3955
    [Google Scholar]
  31. Nachin L., Nannmark U., Nyström T. 2005; Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. J Bacteriol 187:6265–6272
    [Google Scholar]
  32. Nur I., Okon Y., Henis Y. 1982; Effect of dissolved oxygen tension on production of carotenoids, poly- β -hydroxybutyrate, succinate oxidase and superoxide dismutase by Azospirillum brasilense grown in continuous culture. J Gen Microbiol 128:2937–2943
    [Google Scholar]
  33. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T. other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668
    [Google Scholar]
  34. Pereg-Gerk L., Paquelin A., Gounon P., Kennedy I. R., Elmerich C. 1998; Transcriptional regulator of the LuxR–UhpA family, FlcA, controls flocculation and wheat root surface colonization by Azospirillum brasilense Sp7. Mol Plant Microbe Interact 11:177–187
    [Google Scholar]
  35. Poole L. B. 1996; Flavin-dependent alkyl hydroxyperoxide reductase from Salmonella typhymurium . 2. Cysteine disulphides involved in catalysis of peroxide reduction. Biochemistry 35:65–75
    [Google Scholar]
  36. Poole L. B., Ellis H. R. 1996; Flavin-dependent alkyl hydroxyperoxide reductase from Salmonella typhymurium . 1. Purification and enzymatic activities of over expressed AhpF and AhpC proteins. Biochemistry 35:56–64
    [Google Scholar]
  37. Rocha E. R., Smith C. J. 1999; Role of the alkyl hydroxyperoxide reductase ( ahpCF ) gene in oxidative stress defense of the obligate anaerobe Bacteroides fragilis . J Bacteriol 181:5701–5710
    [Google Scholar]
  38. Sadasivan L., Neyra C. A. 1985; Flocculation in Azospirillum brasilense and Azospirillum lipoferum : exopolysaccharides and cyst formation. J Bacteriol 163:716–723
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  40. Scheludko A. V., Katsy E. I., Ostudin N. A., Gringauz O. K., Panasenko V. I. 1998; Novel classes of Azospirillum brasilense mutants with defects in the assembly and functioning of polar and lateral flagella. Mol Gen Mikrobiol Virusol 4:33–37
    [Google Scholar]
  41. Seaver L. C., Imlay J. A. 2001; Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli . J Bacteriol 183:7173–7181
    [Google Scholar]
  42. Soutourina O. A., Semenova E. A., Parfenova V. V., Danchin A., Bertin P. 2001; Control of bacterial motility by environmental factors in polarly flagellated and peritrichous bacteria isolated from Lake Baikal. Appl Environ Microbiol 67:3852–3859
    [Google Scholar]
  43. Steenhoudt O., Vanderleyden J. 2000; Azospirillum , a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical, and ecological aspects. FEMS Microbiol Rev 24:487–506
    [Google Scholar]
  44. Storz G., Zheng M. 2000; Oxidative stress. In Bacterial Stress Responses pp 47–59 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  45. Storz G., Jacobson F. S., Tartaglia L. A., Morgan R. W., Silveira L. A., Ames B. N. 1989; An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli : genetic characterization and cloning of ahp . J Bacteriol 171:2049–2055
    [Google Scholar]
  46. Tai S. S., Zhu Y. Y. 1995; Cloning of a Corynebacterium diphtheriae iron-repressible gene that shares sequence homology with the AhpC subunit of alkyl hydroperoxide reductase of Salmonella typhimurium . J Bacteriol 177:3512–3517
    [Google Scholar]
  47. Tree J. J., Ulett G. C., Hobman J. L., Constantinidou C., Brown N. L., Kershaw C., Schembri M. A., Jennings M. P., McEwan A. G. 2007; The multicopper oxidase (CueO) and cell aggregation in Escherichia coli . Environ Microbiol 9:2110–2116
    [Google Scholar]
  48. Vande Broek A., Michiels J., Van Gool A., Vanderleyden J. 1993; Spatial–temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the nifH gene during association. Mol Plant Microbe Interact 6:592–600
    [Google Scholar]
  49. Zhulin I. B., Bespalov V. A., Johnson M. S., Taylor B. L. 1996; Oxygen taxis and proton motive force in Azospirillum brasilense . J Bacteriol 178:5199–5204
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022541-0
Loading
/content/journal/micro/10.1099/mic.0.022541-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error