1887

Abstract

Correct identification of translational start sites is important for understanding protein function and transcriptional regulation. The annotated translational start sites contained in genome databases are often predicted using bioinformatics and are rarely verified experimentally, and so are not all accurate. Therefore, we devised a simple approach for determining translational start sites using a combination of epitope tagging and frameshift mutagenesis. This assay was used to determine the start sites of three proteins: LexA, SigC and Rv1955. We were able to show that proteins may begin before or after the predicted site. We also found that a small, non-annotated open reading frame upstream of Rv1955 was expressed as a protein, which we have designated Rv1954A. This approach is readily applicable to any bacterial species for which plasmid transformation can be achieved.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022889-0
2009-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/186.html?itemId=/content/journal/micro/10.1099/mic.0.022889-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Besemer J., Lomsadze A., Borodovsky M. 2001; GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618
    [Google Scholar]
  3. Betts J. C., Lukey P. T., Robb L. C., McAdam R. A., Duncan K. 2002; Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731
    [Google Scholar]
  4. Brosch R., Gordon S. V., Garnier T., Eiglmeier K., Frigui W., Valenti P., Dos Santos S., Duthoy S., Lacroix C. other authors 2007; Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci U S A 104:5596–5601
    [Google Scholar]
  5. Camus J. C., Pryor M. J., Medigue C., Cole S. T. 2002; Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148:2967–2973
    [Google Scholar]
  6. Carter R. J., Dubchak I., Holbrook S. R. 2001; A computational approach to identify genes for functional RNAs in genomic sequences. Nucleic Acids Res 29:3928–3938
    [Google Scholar]
  7. Chen N. Y., Paulus H. 1988; Mechanism of expression of the overlapping genes of Bacillus subtilis aspartokinase II. J Biol Chem 263:9526–9532
    [Google Scholar]
  8. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  9. Cole S. T., Eiglmeier K., Parkhill J., James K. D., Thomson N. R., Wheeler P. R., Honore N., Garnier T., Churcher C. other authors 2001; Massive gene decay in the leprosy bacillus. Nature 409:1007–1011
    [Google Scholar]
  10. Davis E. O., Dullaghan E. M., Rand L. 2002; Definition of the mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis . J Bacteriol 184:3287–3295
    [Google Scholar]
  11. Delcher A. L., Harmon D., Kasif S., White O., Salzberg S. L. 1999; Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641
    [Google Scholar]
  12. Durbach S. I., Andersen S. J., Mizrahi V. 1997; SOS induction in mycobacteria: analysis of the DNA-binding activity of a LexA-like repressor and its role in DNA damage induction of the recA gene from Mycobacterium smegmatis . Mol Microbiol 26:643–653
    [Google Scholar]
  13. Edman P. J. 1950; Method for determination of the amino acid sequence in peptides. Acta Chem Scand 4:283–293
    [Google Scholar]
  14. Fleischmann R. D., Alland D., Eisen J. A., Carpenter L., White O., Peterson J., DeBoy R., Dodson R., Gwinn M. other authors 2002; Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184:5479–5490
    [Google Scholar]
  15. Follettie M. T., Peoples O. P., Agoropoulou C., Sinskey A. J. 1993; Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J Bacteriol 175:4096–4103
    [Google Scholar]
  16. Gamulin V., Cetkovic H., Ahel I. 2004; Identification of a promoter motif regulating the major DNA damage response mechanism of Mycobacterium tuberculosis . FEMS Microbiol Lett 238:57–63
    [Google Scholar]
  17. Karls R. K., Guarner J., McMurray D. N., Birkness K. A., Quinn F. D. 2006; Examination of Mycobacterium tuberculosis sigma factor mutants using low-dose aerosol infection of guinea pigs suggests a role for SigC in pathogenesis. Microbiology 152:1591–1600
    [Google Scholar]
  18. Makita Y., de Hoon M., Danchin A. 2007; Hon-yaku: a biology-driven Bayesian methodology for identifying translation initiation sites in prokaryotes. BMC Bioinformatics 8:47
    [Google Scholar]
  19. Moll I., Grill S., Gualerzi C. O., Blasi U. 2002; Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 43:239–246
    [Google Scholar]
  20. Moreno-Hagelsieb G., Collado-Vides J. 2002; A powerful non-homology method for the prediction of operons in prokaryotes. Bioinformatics 18:S329–S336
    [Google Scholar]
  21. Movahedzadeh F., Colston M. J., Davis E. O. 1997; Characterization of Mycobacterium tuberculosis LexA: recognition of a Cheo (Bacillus-type SOS) box. Microbiology 143:929–936
    [Google Scholar]
  22. Nielsen P., Krogh A. 2005; Large-scale prokaryotic gene prediction and comparison to genome annotation. Bioinformatics 21:4322–4329
    [Google Scholar]
  23. Normark S., Bergstrom S., Edlund T., Grundstrom T., Jaurin B., Lindberg F. P., Olsson O. 1983; Overlapping genes. Annu Rev Genet 17:499–525
    [Google Scholar]
  24. Plumbridge J. A., Deville F., Sacerdot C., Petersen H. U., Cenatiempo Y., Cozzone A., Grunberg-Manago M., Hershey J. W. 1985; Two translational initiation sites in the infB gene are used to express initiation factor IF2 alpha and IF2 beta in Escherichia coli . EMBO J 4:223–229
    [Google Scholar]
  25. Rand L. 2003; The role of DNA repair genes in Mycobacterium tuberculosis pathogenesis . PhD thesis University College London;
    [Google Scholar]
  26. Rand L., Hinds J., Springer B., Sander P., Buxton R. S., Davis E. O. 2003; The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA. Mol Microbiol 50:1031–1042
    [Google Scholar]
  27. Rison S. C. G., Mattow J., Jungblut P. R., Stoker N. G. 2007; Experimental determination of translational starts using peptide mass mapping and tandem mass spectrometry within the proteome of Mycobacterium tuberculosis . Microbiology 153:521–528
    [Google Scholar]
  28. Rodrigue S., Provvedi R., Jacques P. E., Gaudreau L., Manganelli R. 2006; The sigma factors of Mycobacterium tuberculosis . FEMS Microbiol Rev 30:926–941
    [Google Scholar]
  29. Sambrook J., Fritsch E., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4:1911–1919
    [Google Scholar]
  31. Spratt J. M., Ryan A. A., Britton W. J., Triccas J. A. 2005; Epitope-tagging vectors for the expression and detection of recombinant proteins in mycobacteria. Plasmid 53:269–273
    [Google Scholar]
  32. Stewart G. R., Wernisch L., Stabler R., Mangan J. A., Hinds J., Laing K. G., Young D. B., Butcher P. D. 2002; Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:3129–3138
    [Google Scholar]
  33. Stinear T. P., Seemann T., Pidot S., Frigui W., Reysset G., Garnier T., Meurice G., Simon D., Bouchier C. other authors 2007; Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res 17:192–200
    [Google Scholar]
  34. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H. other authors 1991; New use of BCG for recombinant vaccines. Nature 351:456–460
    [Google Scholar]
  35. Sun R., Converse P. J., Ko C., Tyagi S., Morrison N. E., Bishai W. R. 2004; Mycobacterium tuberculosis ECF sigma factor sigC is required for lethality in mice and for the conditional expression of a defined gene set. Mol Microbiol 52:25–38
    [Google Scholar]
  36. Thakur K. G., Joshi A. M., Gopal B. 2007; Structural and biophysical studies on two promoter recognition domains of the extra-cytoplasmic function σ factor σ C from Mycobacterium tuberculosis . J Biol Chem 282:4711–4718
    [Google Scholar]
  37. Tyagi J. S., Sharma D. 2002; Mycobacterium smegmatis and tuberculosis. Trends Microbiol 10:68–69
    [Google Scholar]
  38. Waagmeester A., Thompson J., Reyrat J.-M. 2005; Identifying sigma factors in Mycobacterium smegmatis by comparative genomic analysis. Trends Microbiol 13:505–509
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022889-0
Loading
/content/journal/micro/10.1099/mic.0.022889-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error