1887

Abstract

Prioritization of sugar consumption is a common theme in bacterial growth and a problem for complete utilization of five and six carbon sugars derived from lignocellulose. Growth studies show that simultaneously consumes numerous carbon sources and appears to lack normal hierarchical control of carbohydrate utilization. Analysis of several independent isolates indicated that co-utilization of xylose and glucose is a common trait for this species. Moreover, carbohydrates that can be used as a single carbon source are simultaneously utilized with glucose. Analysis of the proteome of cells grown on glucose, xylose or a glucose/xylose mixture revealed the constitutive expression of the enzymes of the heterofermentative pathway. In addition, fermentative mass balances between mixed sugar inputs and end-products indicated that both glucose and xylose are simultaneously metabolized through the heterofermentative pathway. Proteomic and mRNA analyses revealed that genes in the operon were expressed in the cells grown on xylose or on glucose/xylose mixtures but not in those grown on glucose alone. However, the expression level of XylA and XylB proteins in cells grown on a glucose/xylose mixture was reduced 2.7-fold from that observed in cells grown solely on xylose. These results suggest that regulation of xylose utilization in is not stringently controlled as seen in other lactic acid bacteria, where carbon catabolite repression operates to prioritize carbohydrate utilization more rigorously.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024653-0
2009-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1351.html?itemId=/content/journal/micro/10.1099/mic.0.024653-0&mimeType=html&fmt=ahah

References

  1. Chaillou S., Bor Y.-C., Batt C. A., Postma P. W., Pouwels P. H. 1998; Molecular cloning and functional expression in Lactobacillus plantarum 80 of xylT , encoding the d-xylose-H+ symporter of Lactobacillus brevis . Appl Environ Microbiol 64:4720–4728
    [Google Scholar]
  2. Chaillou S., Postma P. W., Pouwels P. H. 2001; Contribution of the phosphoenolpyruvate : mannose phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus . Microbiology 147:671–679
    [Google Scholar]
  3. Cook G. M., Janssen P. H., Morgan H. W. 1993; Simultaneous uptake and utilization of glucose and xylose by Clostridium thermohydrosulfuricum . FEMS Microbiol Lett 109:55–61
    [Google Scholar]
  4. Deutscher J. 2008; The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93
    [Google Scholar]
  5. Deutscher J., Francke C., Postma P. W. 2006; How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031
    [Google Scholar]
  6. Dien B. S., Nichols N. N., Bothast R. J. 2002; Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of l-lactic acid. J Ind Microbiol Biotechnol 29:221–227
    [Google Scholar]
  7. Djordjevic G. M., Tchieu J. H., Saier M. H. 2001; Genes involved in control of galactose uptake in Lactobacillus brevis and reconstitution of the regulatory system in Bacillus subtilis . J Bacteriol 183:3224–3236
    [Google Scholar]
  8. Galbe M., Zacchi G. 2002; A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628
    [Google Scholar]
  9. Gobbetti M., Corsetti A. 1996; Co-metabolism of citrate and maltose by Lactobacillus brevis subsp. lindneri CB1 citrate-negative strain: effect on growth, end-products and sourdough fermentation. Z Leb Untersuch Forsch 203:82–87
    [Google Scholar]
  10. Görke B., Stülke J. 2008; Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624
    [Google Scholar]
  11. Hofvendahl K., Hahn-Haegerdal B. 2000; Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107
    [Google Scholar]
  12. Ingram L. O., Aldrich H. C., Borges A. C. C., Causey T. B., Martinez A., Morales F., Saleh A., Underwood S. A., Yomano L. P. other authors 1999; Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866
    [Google Scholar]
  13. Kastner J. R., Roberts R. S. 1990; Simultaneous fermentation of d-xylose and glucose by Candida shehatae . Biotechnol Lett 12:57–60
    [Google Scholar]
  14. Kastner J. R., Jones W. J., Roberts R. S. 1998; Simultaneous utilization of glucose and d-xylose by Candida shehatae in a chemostat. J Ind Microbiol Biotechnol 20:339–343
    [Google Scholar]
  15. Kennes C., Veiga M. C., Dubourguier H. C., Touzel J. P., Albagnac G., Naveau H., Nyns E. J. 1991; Trophic relationships between Saccharomyces cerevisiae and Lactobacillus plantarum and their metabolism of glucose and citrate. Appl Environ Microbiol 57:1046–1051
    [Google Scholar]
  16. Maheshwari R., Balasubramanyam P. V. 1988; Simultaneous utilization of glucose and sucrose by thermophilic fungi. J Bacteriol 170:3274–3280
    [Google Scholar]
  17. Mahr K., Hillen W., Titgemeyer F. 2000; Carbon catabolite repression in Lactobacillus pentosus : analysis of the ccpA region. Appl Environ Microbiol 66:277–283
    [Google Scholar]
  18. Marasco R., Muscariello L., Varcamonti M., De Felice M., Sacco M. 1998; Expression of the bglH gene of Lactobacillus plantarum is controlled by carbon catabolite repression. J Bacteriol 180:3400–3404
    [Google Scholar]
  19. Marounek M., Kopecny J. 1994; Utilization of glucose and xylose in ruminal strains of Butyrivibrio fibrisolvens . Appl Environ Microbiol 60:738–739
    [Google Scholar]
  20. Morel F., Frot-Coutaz J., Aubel D., Portalier R., Atlan D. 1999; Characterization of a prolidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397 with an unusual regulation of biosynthesis. Microbiology 145:437–446
    [Google Scholar]
  21. Paoletti A. C., Parmely T. J., Tomomori-Sato C., Sato S., Zhu D. X., Conaway R. C., Conaway J. W., Florens L., Washburn M. P. 2006; Quantitative proteomic analysis of distinct mammalian mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci U S A 103:18928–18933
    [Google Scholar]
  22. Posthuma C. C., Bader R., Engelmann R., Postma P. W., Hengstenberg W., Pouwels P. H. 2002; Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA , from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system. Appl Environ Microbiol 68:831–837
    [Google Scholar]
  23. Ramos A., Jordan K. N., Cogan T. M., Santos H. 1994; 13C nuclear magnetic resonance studies of citrate and glucose cometabolism by Lactococcus lactis . Appl Environ Microbiol 60:1739–1748
    [Google Scholar]
  24. Saier M. H. 1998; Multiple mechanisms controlling carbon metabolism in bacteria. Biotechnol Bioeng 58:170–174
    [Google Scholar]
  25. Saier M. H., Ye J. J., Klinke S., Nino E. 1996; Identification of an anaerobically induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden–Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis . J Bacteriol 178:314–316
    [Google Scholar]
  26. Salminen S., Wright A. 1993 Lactic Acid Bacteria New York: Dekker;
  27. Schick J., Weber B., Klein J. R., Henrich B. 1999; PepR1, a CcpA-like transcription regulator of Lactobacillus delbrueckii subsp. lactis . Microbiology 145:3147–3154
    [Google Scholar]
  28. Slaff G. F., Humphrey A. E. 1986; The growth of Clostridium thermohydrosulfuricum on multiple substrates. Chem Eng Commun 45:33–51
    [Google Scholar]
  29. Strobel H. J., Dawson K. A. 1993; Xylose and arabinose utilization by the rumen bacterium Butyrivibrio fibrisolvens . FEMS Microbiol Lett 113:291–296
    [Google Scholar]
  30. Stülke J., Hillen W. 1999; Carbon catabolite repression in bacteria. Curr Opin Microbiol 2:195–201
    [Google Scholar]
  31. Thurston B., Dawson K. A., Strobel H. J. 1994; Pentose utilization by the ruminal bacterium Ruminococcus albus . Appl Environ Microbiol 60:1087–1092
    [Google Scholar]
  32. Titgemeyer F., Hillen W. 2002; Global control of sugar metabolism: a gram-positive solution. Antonie Van Leeuwenhoek 82:59–71
    [Google Scholar]
  33. Veiga da Cunha M., Foster M. A. 1992; Sugar-glycerol cofermentations in lactobacilli: the fate of lactate. J Bacteriol 174:1013–1019
    [Google Scholar]
  34. Veyrat A., Monedero V., Perez-Martinez G. 1994; Glucose transport by the phosphoenolpyruvate : mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology 140:1141–1149
    [Google Scholar]
  35. Viana R., Monedero V., Dossonnet V., Vadeboncoeur C., Perez-Martinez G., Deutscher J. 2000; Enzyme I and HPr from Lactobacillus casei : their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol Microbiol 36:570–584
    [Google Scholar]
  36. Ye J. J., Saier M. H. 1995a; Cooperative binding of lactose and the phosphorylated phosphocarrier protein HPr(Ser-P) to the lactose/H+ symport permease of Lactobacillus brevis . Proc Natl Acad Sci U S A 92:417–421
    [Google Scholar]
  37. Ye J. J., Saier M. H. 1995b; Allosteric regulation of the glucose : H+ symporter of Lactobacillus brevis : cooperative binding of glucose and HPr(ser-P. J Bacteriol 177:1900–1902
    [Google Scholar]
  38. Ye J. J., Neal J. W., Cui X., Reizer J., Saier M. H. 1994a; Regulation of the glucose : H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis . J Bacteriol 176:3484–3492
    [Google Scholar]
  39. Ye J. J., Reizer J., Cui X., Saier M. H. 1994b; ATP-dependent phosphorylation of serine-46 in the phosphocarrier protein HPr regulates lactose/H+ symport in Lactobacillus brevis . Proc Natl Acad Sci U S A 91:3102–3106
    [Google Scholar]
  40. Ye J. J., Minarcik J., Saier M. H. 1996; Inducer expulsion and the occurrence of an HPr(Ser-P)-activated sugar-phosphate phosphatase in Enterococcus faecalis and Streptococcus pyogenes . Microbiology 142:585–592
    [Google Scholar]
  41. Zuniga M., Champomier-Verges M., Zagorec M., Perez-Martinez G. 1998; Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake . J Bacteriol 180:4154–4159
    [Google Scholar]
  42. Zybailov B., Coleman M. K., Florens L., Washburn M. P. 2005; Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal Chem 77:6218–6224
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024653-0
Loading
/content/journal/micro/10.1099/mic.0.024653-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error