1887

Abstract

Pathogenic enteric bacteria are a major cause of drinking water related morbidity and mortality in developing countries. Solar disinfection (SODIS) is an effective means to fight this problem. In the present study, SODIS of two important enteric pathogens, and was investigated with a variety of viability indicators including cellular ATP levels, efflux pump activity, glucose uptake ability, and polarization and integrity of the cytoplasmic membrane. The respiratory chain of enteric bacteria was identified to be a likely target of sunlight and UVA irradiation. Furthermore, during dark storage after irradiation, the physiological state of the bacterial cells continued to deteriorate even in the absence of irradiation: apparently the cells were unable to repair damage. This strongly suggests that for and , a relatively small light dose is enough to irreversibly damage the cells and that storage of bottles after irradiation does not allow regrowth of inactivated bacterial cells. In addition, we show that light dose reciprocity is an important issue when using simulated sunlight. At high irradiation intensities (>700 W m) light dose reciprocity failed and resulted in an overestimation of the effect, whereas reciprocity applied well around natural sunlight intensity (<400 W m).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024794-0
2009-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1310.html?itemId=/content/journal/micro/10.1099/mic.0.024794-0&mimeType=html&fmt=ahah

References

  1. Acra A., Karahagopian Y., Raffoul Z., Dajani R. 1980; Disinfection of oral rehydration solutions by sunlight. Lancet 316:1257–1258
    [Google Scholar]
  2. Berney M., Weilenmann H.-U., Egli T. 2006a; Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS. Microbiology 152:1719–1729
    [Google Scholar]
  3. Berney M., Weilenmann H.-U., Ihssen J., Bassin C., Egli T. 2006b; Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA and solar disinfection. Appl Environ Microbiol 72:2586–2593
    [Google Scholar]
  4. Berney M., Weilenmann H. U., Egli T. 2006c; Gene expression of Escherichia coli in continuous culture during adaptation to artificial sunlight. Environ Microbiol 8:1635–1647
    [Google Scholar]
  5. Berney M., Hammes F., Bosshard F., Weilenmann H. U., Egli T. 2007; Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 73:3283–3290
    [Google Scholar]
  6. Berney M., Vital M., Hülshoff I., Weilenmann H.-U., Egli T., Hammes F. 2008; Rapid, cultivation-independent assessment of microbial viability in drinking water. Water Res 42:4010–4018
    [Google Scholar]
  7. Dzidic S., Salaj-Smic E., Trgovcevic Z. 1986; The relationship between survival and mutagenesis in Escherichia coli after fractionated ultraviolet irradiation. Mutat Res 173:89–91
    [Google Scholar]
  8. Geeraerd A. H., Valdramidis V. P., Van Impe J. F. 2005; GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int J Food Microbiol 102:95–105
    [Google Scholar]
  9. Harm W. 1968; Effects of dose fractionation on ultraviolet survival of Escherichia coli . Photochem Photobiol 7:73–86
    [Google Scholar]
  10. Harm W. 1980 Biological Effects of Ultraviolet Radiation Cambridge: Cambridge University Press;
  11. Hoerter J. D., Ward C. S., Bale K. D., Gizachew A. N., Graham R., Reynolds J., Ward M. E., Choi C., Kagabo J. L. other authors 2008; Effect of UVA fluence rate on indicators of oxidative stress in human dermal fibroblasts. Int J Biol Sci 4:63–70
    [Google Scholar]
  12. Jagger J. 1981; Near-UV radiation effects on microorganisms. Photochem Photobiol 34:761–768
    [Google Scholar]
  13. Joyce T. M., McGuigan K. G., Elmore-Meegan M., Conroy R. M. 1996; Inactivation of fecal bacteria in drinking water by solar heating. Appl Environ Microbiol 62:399–402
    [Google Scholar]
  14. Kalisvaart B. F. 2001; Photobiological effects of polychromatic medium pressure UV lamps. Water Sci Technol 43:191–197
    [Google Scholar]
  15. Kalisvaart B. F. 2004; Re-use of wastewater: preventing the recovery of pathogens by using medium-pressure UV lamp technology. Water Sci Technol 50:337–344
    [Google Scholar]
  16. Kobayashi H., Miyamoto T., Hashimoto Y., Kiriki M., Motomatsu A., Honjoh K., Iio M. 2005; Identification of factors involved in recovery of heat-injured Salmonella Enteritidis. J Food Prot 68:932–941
    [Google Scholar]
  17. Martin J. W., Chin J. W., Nguyen T. 2003; Reciprocity law experiments in polymeric photodegradation: a critical review. Prog Org Coat 47:292–311
    [Google Scholar]
  18. McGuigan K. G., Joyce T. M., Conroy R. M., Gillespie J. B., Elmore-Meegan M. 1998; Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process. J Appl Microbiol 84:1138–1148
    [Google Scholar]
  19. Merwald H., Klosner G., Kokesch C., Der-Petrossian M., Honigsmann H., Trautinger F. 2005; UVA-induced oxidative damage and cytotoxicity depend on the mode of exposure. J Photochem Photobiol B 79:197–207
    [Google Scholar]
  20. Natarajan A., Srienc F. 2000; Glucose uptake rates of single E. coli cells grown in glucose-limited chemostat cultures. J Microbiol Methods 42:87–96
    [Google Scholar]
  21. Oates P. M., Shanahan P., Polz M. F. 2003; Solar disinfection (SODIS): simulation of solar radiation for global assessment and application for point-of-use water treatment in Haiti. Water Res 37:47–54
    [Google Scholar]
  22. Oguma K., Katayama H., Ohgaki S. 2002; Photoreactivation of Escherichia coli after low- or medium-pressure UV disinfection determined by an endonuclease sensitive site assay. Appl Environ Microbiol 68:6029–6035
    [Google Scholar]
  23. Reed R. H. 1997; Solar inactivation of faecal bacteria in water: the critical role of oxygen. Lett Appl Microbiol 24:276–280
    [Google Scholar]
  24. Rose A., Roy S., Abraham V., Holmgren G., George K., Balraj V., Abraham S., Muliyil J., Joseph A., Kang G. 2006; Solar disinfection of water for diarrhoeal prevention in southern India. Arch Dis Child 91:139–141
    [Google Scholar]
  25. Salaj-Smic E., Dzidic S., Trgovcevic Z. 1985; The effect of a split UV dose on survival, division delay and mutagenesis in Escherichia coli . Mutat Res 144:127–130
    [Google Scholar]
  26. Smith R. J., Kehoe S. C., McGuigan K. G., Barer M. R. 2000; Effects of simulated solar disinfection of water on infectivity of Salmonella typhimurium . Lett Appl Microbiol 31:284–288
    [Google Scholar]
  27. Sommer R., Haider T., Cabaj A., Heidenreich E., Kundi M. 1996; Increased inactivation of Saccharomyces cerevisiae by protraction of UV irradiation. Appl Environ Microbiol 62:1977–1983
    [Google Scholar]
  28. Sommer R., Pribil W., Appelt S., Gehringer P., Eschweiler H., Leth H., Cabaj A., Haider T. 2001; Inactivation of bacteriophages in water by means of non-ionizing (UV-253.7 nm) and ionizing (gamma) radiation: a comparative approach. Water Res 35:3109–3116
    [Google Scholar]
  29. Vital M., Fuchslin H. P., Hammes F., Egli T. 2007; Growth of Vibrio cholerae O1 Ogawa Eltor in freshwater. Microbiology 153:1993–2001
    [Google Scholar]
  30. Vital M., Hammes F., Egli T. 2008; Escherichia coli O157 can grow in natural freshwater at low carbon concentrations. Environ Microbiol 10:2387–2396
    [Google Scholar]
  31. Wegelin M., Canonica S., Mechsner K., Fleischmann T., Pesaro F., Metzler A. 1994; Solar water disinfection: scope of the process and analysis of radiation experiments. Aqua 43:154–169
    [Google Scholar]
  32. Zimmer-Thomas J. L., Slawson R. M., Huck P. M. 2007; A comparison of DNA repair and survival of Escherichia coli O157 : H7 following exposure to both low- and medium-pressure UV irradiation. J Water Health 5:407–415
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024794-0
Loading
/content/journal/micro/10.1099/mic.0.024794-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error