1887

Abstract

-Alanine is a structural component of mycobacterial peptidoglycan. The primary route of -alanine biosynthesis in eubacteria is the enantiomeric conversion from -alanine, a reaction catalysed by -alanine racemase (Alr). insertion mutants are not dependent on -alanine for growth and display a metabolic pattern consistent with an alternative pathway for -alanine biosynthesis. In this study, we demonstrate that the insertion mutant TAM23 can synthesize -alanine at lower levels than the parental strain. The insertional inactivation of the gene also decreases the intracellular survival of mutant strains within primary human monocyte-derived macrophages. By complementation studies, we confirmed that the impairment of gene function is responsible for this reduced survival. Inhibition of superoxide anion and nitric oxide formation in macrophages suppresses the differential survival. In contrast, for bacteria grown in broth, both strains had approximately the same susceptibility to hydrogen peroxide, acidified sodium nitrite, low pH and polymyxin B. In contrast, TAM23 exhibited increased resistance to lysozyme. -Alanine supplementation considerably increased TAM23 viability in nutritionally deficient media and within macrophages. These results suggest that nutrient deprivation in phagocytic cells combined with killing mediated by reactive intermediates underlies the decreased survival of mutants. This knowledge may be valuable in the construction of mycobacterial auxotrophic vaccine candidates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024901-0
2009-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1440.html?itemId=/content/journal/micro/10.1099/mic.0.024901-0&mimeType=html&fmt=ahah

References

  1. Anes E., Peyron P., Staali L., Jordao L., Gutierrez M. G., Kress H., Hagedorn M., Maridonneau-Parini I., Skinner M. A. other authors 2006; Dynamic life and death interactions between Mycobacterium smegmatis and J774 macrophages. Cell Microbiol 8:939–960
    [Google Scholar]
  2. Appelberg R. 2006; Macrophage nutriprive antimicrobial mechanisms. J Leukoc Biol 79:1117–1128
    [Google Scholar]
  3. Armstrong J. A., Hart P. D. 1975; Phagosome–lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 142:1–16
    [Google Scholar]
  4. Belanger A. E., Inamine J. M. 2000; Genetics of cell wall biosynthesis. In Molecular Genetics of Mycobacteria pp 191–202 Edited by Hatfull G. F., Jacobs W. R. Jr Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Bermudez L. E. 1993; Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide. Clin Exp Immunol 91:277–281
    [Google Scholar]
  6. Bermudez L. E., Young L. S. 1988; Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium complex. J Immunol 140:3006–3013
    [Google Scholar]
  7. Bermudez L. E., Young L. S. 1989; Oxidative and non-oxidative intracellular killing of Mycobacterium avium complex. Microb Pathog 7:289–298
    [Google Scholar]
  8. Brennan P. J., Nikaido H. 1995; The envelope of mycobacteria. Annu Rev Biochem 64:29–63
    [Google Scholar]
  9. Brown N., Jacobs M., Parida S. K., Botha T., Santos A., Fick L., Gicquel B., Jackson M., Quesniaux V., Ryffel B. 2005; Reduced local growth and spread but preserved pathogenicity of a Δ purC Mycobacterium tuberculosis auxotrophic mutant in gamma interferon receptor-deficient mice after aerosol infection. Infect Immun 73:666–670
    [Google Scholar]
  10. Caceres N. E., Harris N. B., Wellehan J. F., Feng Z., Kapur V., Barletta R. G. 1997; Overexpression of the d-alanine racemase gene confers resistance to d-cycloserine in Mycobacterium smegmatis . J Bacteriol 179:5046–5055
    [Google Scholar]
  11. Chacon O., Feng Z., Harris N. B., Caceres N. E., Adams L. G., Barletta R. G. 2002; Mycobacterium smegmatis d-alanine racemase mutants are not dependent on d-alanine for growth. Antimicrob Agents Chemother 46:47–54
    [Google Scholar]
  12. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  13. Crawford R. M., Van De Verg L., Yuan L., Hadfield T. L., Warren R. L., Drazek E. S., Houng H. H., Hammack C., Sasala K. other authors 1996; Deletion of purE attenuates Brucella melitensis infection in mice. Infect Immun 64:2188–2192
    [Google Scholar]
  14. Daffé M., Draper P. 1998; The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203
    [Google Scholar]
  15. Danilchanka O., Pavlenok M., Niederweis M. 2008; Role of porins for uptake of antibiotics by Mycobacterium smegmatis . Antimicrob Agents Chemother 52:3127–3134
    [Google Scholar]
  16. De Voss J. J., Rutter K., Schroeder B. G., Su H., Zhu Y., Barry C. E. III 2000; The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97:1252–1257
    [Google Scholar]
  17. Eckstein T. M., Belisle J. T., Inamine J. M. 2003; Proposed pathway for the biosynthesis of serovar-specific glycopeptidolipids in Mycobacterium avium serovar 2. Microbiology 149:2797–2807
    [Google Scholar]
  18. Ehrt S., Shiloh M. U., Ruan J., Choi M., Gunzburg S., Nathan C., Xie Q., Riley L. W. 1997; A novel antioxidant gene from Mycobacterium tuberculosis . J Exp Med 186:1885–1896
    [Google Scholar]
  19. Etienne G., Laval F., Villeneuve C., Dinadayala P., Abouwarda A., Zerbib D., Galamba A., Daffé M. 2005; The cell envelope structure and properties of Mycobacterium smegmatis mc2155: is there a clue for the unique transformability of the strain?. Microbiology 151:2075–2086
    [Google Scholar]
  20. Feng Z., Barletta R. G. 2003; Roles of Mycobacterium smegmatis d-alanine : d-alanine ligase and d-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor d-cycloserine. Antimicrob Agents Chemother 47:283–291
    [Google Scholar]
  21. Firmani M. A., Riley L. W. 2002; Reactive nitrogen intermediates have a bacteriostatic effect on Mycobacterium tuberculosis in vitro. J Clin Microbiol 40:3162–3166
    [Google Scholar]
  22. Forman H. J., Torres M. 2001; Redox signaling in macrophages. Mol Aspects Med 22:189–216
    [Google Scholar]
  23. Garg S., Vitvitsky V., Gendelman H. E., Banerjee R. 2006; Monocyte differentiation, activation, and mycobacterial killing are linked to transsulfuration-dependent redox metabolism. J Biol Chem 281:38712–38720
    [Google Scholar]
  24. Glover R. T., Kriakov J., Garforth S. J., Baughn A. D., Jacobs W. R. Jr 2007; The two-component regulatory system senX3–regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis . J Bacteriol 189:5495–5503
    [Google Scholar]
  25. Guleria I., Teitelbaum R., McAdam R. A., Kalpana G., Jacobs W. R. Jr, Bloom B. R. 1996; Auxotrophic vaccines for tuberculosis. Nat Med 2:334–337
    [Google Scholar]
  26. Halouska S., Chacon O., Fenton R. J., Zinniel D. K., Barletta R. G., Powers R. 2007; Use of NMR metabolomics to analyze the targets of d-cycloserine in mycobacteria: role of d-alanine racemase. J Proteome Res 6:4608–4614
    [Google Scholar]
  27. Hondalus M. K., Bardarov S., Russell R., Chan J., Jacobs W. R. Jr, Bloom B. R. 2000; Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis . Infect Immun 68:2888–2898
    [Google Scholar]
  28. Jackson M., Phalen S. W., Lagranderie M., Ensergueix D., Chavarot P., Marchal G., McMurray D. N., Gicquel B., Guilhot C. 1999; Persistence and protective efficacy of a Mycobacterium tuberculosis auxotroph vaccine. Infect Immun 67:2867–2873
    [Google Scholar]
  29. Jordao L., Bleck C. K., Mayorga L., Griffiths G., Anes E. 2008; On the killing of mycobacteria by macrophages. Cell Microbiol 10:529–548
    [Google Scholar]
  30. Kaufman D. S., Manley W. F. 1998; A new prodedure for determining enantiomeric dl amino acid ratios in fossils using reverse phase liquid chromatography. Quat Sci Rev 17:987–1000
    [Google Scholar]
  31. Kesado T., Hashizume T., Asahi Y. 1980; Antibacterial activities of a new stabilized thienamycin, N -formimidoyl thienamycin, in comparison with other antibiotics. Antimicrob Agents Chemother 17:912–917
    [Google Scholar]
  32. Kocincova D., Winter N., Euphrasie D., Daffé M., Reyrat J. M., Etienne G. 2009; The cell surface-exposed glycopeptidolipids confer a selective advantage to the smooth variants of Mycobacterium smegmatis in vitro . FEMS Microbiol Lett 290:39–44
    [Google Scholar]
  33. Kuehnel M. P., Goethe R., Habermann A., Mueller E., Rohde M., Griffiths G., Valentin-Weigand P. 2001; Characterization of the intracellular survival of Mycobacterium avium ssp. paratuberculosis : phagosomal pH and fusogenicity in J774 macrophages compared with other mycobacteria. Cell Microbiol 3:551–566
    [Google Scholar]
  34. Lagier B., Pelicic V., Lecossier D., Prod'hom G., Rauzier J., Guilhot C., Gicquel B., Hance A. J. 1998; Identification of genetic loci implicated in the survival of Mycobacterium smegmatis in human mononuclear phagocytes. Mol Microbiol 29:465–475
    [Google Scholar]
  35. Lowrie D. B., Andrew P. W. 1988; Macrophage antimycobacterial mechanisms. Br Med Bull 44:624–634
    [Google Scholar]
  36. Martin J. H., Edwards S. W. 1993; Changes in mechanisms of monocyte/macrophage-mediated cytotoxicity during culture. Reactive oxygen intermediates are involved in monocyte-mediated cytotoxicity, whereas reactive nitrogen intermediates are employed by macrophages in tumor cell killing. J Immunol 150:3478–3486
    [Google Scholar]
  37. Martin L., Comalada M., Marti L., Closs E. I., MacLeod C. L., Martín del Río R., Zorzano A., Modolell M., Celada A. other authors 2006; Granulocyte-macrophage colony-stimulating factor increases l-arginine transport through the induction of CAT2 in bone marrow-derived macrophages. Am J Physiol Cell Physiol 290:C1364–C1372
    [Google Scholar]
  38. McGarvey J. A., Wagner D., Bermudez L. E. 2004; Differential gene expression in mononuclear phagocytes infected with pathogenic and non-pathogenic mycobacteria. Clin Exp Immunol 136:490–500
    [Google Scholar]
  39. McNeil M. R., Brennan P. J. 1991; Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res Microbiol 142:451–463
    [Google Scholar]
  40. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  41. Miller B. H., Shinnick T. M. 2000; Evaluation of Mycobacterium tuberculosis genes involved in resistance to killing by human macrophages. Infect Immun 68:387–390
    [Google Scholar]
  42. Milligan D. L., Tran S. L., Strych U., Cook G. M., Krause K. L. 2007; The alanine racemase of Mycobacterium smegmatis is essential for growth in the absence of d-alanine. J Bacteriol 189:8381–8386
    [Google Scholar]
  43. Mintz C. S., Chen J. X., Shuman H. A. 1988; Isolation and characterization of auxotrophic mutants of Legionella pneumophila that fail to multiply in human monocytes. Infect Immun 56:1449–1455
    [Google Scholar]
  44. Nathan C., Shiloh M. U. 2000; Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97:8841–8848
    [Google Scholar]
  45. Pascopella L., Collins F. M., Martin J. M., Lee M. H., Hatfull G. F., Stover C. K., Bloom B. R., Jacobs W. R. Jr 1994; Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect Immun 62:1313–1319
    [Google Scholar]
  46. Pavelka M. S. Jr, Jacobs W. R. Jr 1999; Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis , Mycobacterium bovis bacillus Calmette–Guérin, and Mycobacterium tuberculosis H37Rv by allelic exchange. J Bacteriol 181:4780–4789
    [Google Scholar]
  47. Pavelka M. S. Jr, Chen B., Kelley C. L., Collins F. M., Jacobs W. R. Jr 2003; Vaccine efficacy of a lysine auxotroph of Mycobacterium tuberculosis . Infect Immun 71:4190–4192
    [Google Scholar]
  48. Perkins H. R., Nieto M. 1974; The chemical basis for the action of the vancomycin group of antibiotics. Ann N Y Acad Sci 235:348–363
    [Google Scholar]
  49. Posey J. E., Shinnick T. M., Quinn F. D. 2006; Characterization of the twin-arginine translocase secretion system of Mycobacterium smegmatis . J Bacteriol 188:1332–1340
    [Google Scholar]
  50. Provvedi R., Kocincova D., Dona V., Euphrasie D., Daffé M., Etienne G., Manganelli R., Reyrat J. M. 2008; SigF controls carotenoid pigment production and affects transformation efficiency and hydrogen peroxide sensitivity in Mycobacterium smegmatis . J Bacteriol 190:7859–7863
    [Google Scholar]
  51. Riviere M., Puzo G. 1991; A new type of serine-containing glycopeptidolipid from Mycobacterium xenopi . J Biol Chem 266:9057–9063
    [Google Scholar]
  52. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  53. Sassetti C. M., Boyd D. H., Rubin E. J. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84
    [Google Scholar]
  54. Shiloh M. U., Nathan C. F. 2000; Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria. Curr Opin Microbiol 3:35–42
    [Google Scholar]
  55. Singh P. P., Parra M., Cadieux N., Brennan M. J. 2008; A comparative study of host response to three Mycobacterium tuberculosis PE_PGRS proteins. Microbiology 154:3469–3479
    [Google Scholar]
  56. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4:1911–1919
    [Google Scholar]
  57. Strominger J. L. 1962; Biosynthesis of bacterial cell walls. In The Bacteria, Volume 3, Biosynthesis pp 413–470 Edited by Gunzalus I. C., Stanier R. Y. New York: Academic Press;
    [Google Scholar]
  58. Sturgill-Koszycki S., Schlesinger P. H., Chakraborty P., Haddix P. L., Collins H. L., Fok A. K., Allen R. D., Gluck S. L., Heuser J., Russell D. G. 1994; Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681
    [Google Scholar]
  59. Trias J., Benz R. 1994; Permeability of the cell wall of Mycobacterium smegmatis . Mol Microbiol 14:283–290
    [Google Scholar]
  60. Valko M., Leibfritz D., Moncol J., Cronin M. T., Mazur M., Telser J. 2007; Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84
    [Google Scholar]
  61. Wagner D., Maser J., Lai B., Cai Z., Barry C. E. III, Honer Zu Bentrup K., Russell D. G., Bermudez L. E. 2005; Elemental analysis of Mycobacterium avium -, Mycobacterium tuberculosis -, and Mycobacterium smegmatis -containing phagosomes indicates pathogen-induced microenvironments within the host cell's endosomal system. J Immunol 174:1491–1500
    [Google Scholar]
  62. Yu S., Fiss E., Jacobs W. R. Jr 1998; Analysis of the exochelin locus in Mycobacterium smegmatis : biosynthesis genes have homology with genes of the peptide synthetase family. J Bacteriol 180:4676–4685
    [Google Scholar]
  63. Yu K., Mitchell C., Xing Y., Magliozzo R. S., Bloom B. R., Chan J. 1999; Toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. Tuber Lung Dis 79:191–198
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024901-0
Loading
/content/journal/micro/10.1099/mic.0.024901-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error