1887

Abstract

While the shotgun proteomics approach is gaining momentum in understanding microbial physiology, it remains limited by the paucity of high-quality genomic data, especially when it comes to poorly characterized newly identified phyla. At the same time, large-scale metagenomic sequencing projects produce datasets representing genomes of a variety of environmental microbes, although with lower sequence coverage and sequence quality. In this work we tested the utility of a metagenomic dataset enriched in sequences of environmental strains of to assess the protein profile of a laboratory-cultivated strain, JLW8, as a proof of principle. We demonstrate that a large portion of the proteome predicted from the metagenomic sequence (approx. 20 %) could be identified with high confidence (three or more peptide sequences), thus gaining insights into the physiology of this bacterium, which represents a new genus within the family .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024968-0
2009-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1103.html?itemId=/content/journal/micro/10.1099/mic.0.024968-0&mimeType=html&fmt=ahah

References

  1. Bosch G., Skovran E., Xia Q., Wang T., Taub F., Miller J. A., Lidstrom M. E., Hackett M. 2008; Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and non-methylotrophic conditions. Proteomics 8:3494–3505
    [Google Scholar]
  2. Bravo A., Mora J. 1988; Ammonium assimilation in Rhizobium phaseoli by the glutamine synthetase-glutamate synthase pathway. J Bacteriol 170:980–984
    [Google Scholar]
  3. Callister S. J., McCue L. A., Turse J. E., Monroe M. E., Auberry K. J., Smith R. D., Adkins J. N., Lipton M. S. 2008; Comparative bacterial proteomics: analysis of the core genome concept. PLoS One 3:e1542
    [Google Scholar]
  4. Chistoserdova L., Vorholt J. A., Thauer R. K., Lidstrom M. E. 1998; C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea . Science 281:99–102
    [Google Scholar]
  5. Chistoserdova L., Gomelsky L., Vorholt J. A., Gomelsky M., Tsygankov Y. D., Thauer R. K., Lidstrom M. E. 2000; Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiology 146:233–238
    [Google Scholar]
  6. Chistoserdova L., Chen S.-W., Lapidus A., Lidstrom M. E. 2003; Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185:2980–2987
    [Google Scholar]
  7. Chistoserdova L., Crowther G. J., Vorholt J. A., Skovran B., Portais J.-C., Lidstrom M. E. 2007a; Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 189:9076–9081
    [Google Scholar]
  8. Chistoserdova L., Lapidus A., Han C., Goodwin L., Saunders L., Brettin T., Tapia R., Gilna P., Lucas S. other authors 2007b; The genome of Methylobacillus flagellatus , the molecular basis for obligate methylotrophy, and the polyphyletic origin of methylotrophy. J Bacteriol 189:4020–4027
    [Google Scholar]
  9. Denef V. J., Shah M. B., Verberkmoes N. C., Hettich R. L., Banfield J. F. 2007; Implications of strain- and species-level sequence divergence for community and isolate shotgun proteomic analysis. J Proteome Res 6:3152–3161
    [Google Scholar]
  10. Elias J. E., Gygi S. P. 2007; Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214
    [Google Scholar]
  11. Frias-Lopez J., Shi Y., Tyson G. W., Coleman M. L., Schuster S. C., Chisholm S. W., DeLong E. F. 2008; Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci U S A 105:3805–3810
    [Google Scholar]
  12. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D., Bairoch A. 2005; Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook pp 571–607 Edited by Walker John M. Totowa, NJ: Humana Press;
    [Google Scholar]
  13. Gilbert J. A., Field D., Huang Y., Edwards R., Li W., Gilna P., Joint I. 2008; Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3:e3042
    [Google Scholar]
  14. Kalyuzhnaya M. G., Korotkova N., Crowther G. J., Marx C. J., Lidstrom M., Chistoserdova L. 2005; Analysis of gene islands involved in methanopterin-linked C1 transfer reactions reveals new functions and provides evolutionary insights. J Bacteriol 187:4607–4614
    [Google Scholar]
  15. Kalyuzhnaya M. G., Bowerman S., Lara J. C., Lidstrom M. E., Chistoserdova L. 2006; Methylotenera mobilis gen. nov., sp. nov, an obligately methylamine-utilizing bacterium within the family Methylophilaceae . Int J Syst Evol Microbiol 56:2819–2823
    [Google Scholar]
  16. Kalyuzhnaya M. G., Hristova K. R., Lidstrom M. E., Chistoserdova L. 2008a; Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales : implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190:3817–3823
    [Google Scholar]
  17. Kalyuzhnaya M. G., Lapidus A., Ivanova N., Copeland A. C., McHardy A., Szeto E., Salamov A., Grigoriev I. V., Suciu D. other authors 2008b; High resolution metagenomics targets major functional types in complex microbial communities. Nat Biotechnol 26:1029–1034
    [Google Scholar]
  18. Konstantinidis K. T., Tiedje J. M. 2005; Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264
    [Google Scholar]
  19. Li X., Fu R., Liu A., Davidson V. L. 2008; Kinetic and physical evidence that the diheme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone. Biochemistry 47:2908–2912
    [Google Scholar]
  20. Lidstrom M. E. 2006; Aerobic methylotrophic prokaryotes. In The Prokaryotes Edited by Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  21. Murrell J. C., Dalton H. 1983; Purification and properties of glutamine synthetase from Methylococcus capsulatus (Bath. J Gen Microbiol 129:1187–1196
    [Google Scholar]
  22. Ram R. J., Verberkmoes N. C., Thelen M. P., Tyson G. W., Baker B. J., Blake R. C. II, Shah M., Hettich R. L., Banfield J. F. 2005; Community proteomics of a natural microbial biofilm. Science 308:1915–1920
    [Google Scholar]
  23. Rappé M. S., Giovannoni S. J. 2003; The uncultured microbial majority. Annu Rev Microbiol 57:369–394
    [Google Scholar]
  24. Rusch D. B., Halpern A. L., Sutton G., Heidelberg K. B., Williamson S., Yooseph S., Wu D., Eisen J. A., Hoffman J. M. other authors 2007; The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5:e77
    [Google Scholar]
  25. Tringe S. G., von Mering C., Kobayashi A., Salamov A. A., Chen A., Chang H. W., Podar M., Short J. M., Mathur A. J. other authors 2005; Comparative metagenomics of microbial communities. Science 308:554–557
    [Google Scholar]
  26. van der Palen C. J., Reijnders W. N., de Vries S., Duine J. A., Spaning R. J. 1997; MauE and MauD proteins are essential in methylamine metabolism of Paracoccus denitrificans . Antonie Van Leeuwenhoek 72:219–228
    [Google Scholar]
  27. Vorholt J. A., Marx C. J., Lidstrom M. E., Thauer R. K. 2000; Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182:6645–6650
    [Google Scholar]
  28. Wilson S. M., Gleisten M. P., Donohue T. J. 2008; Identification of proteins involved in formaldehyde metabolism by Rhodobacter sphaeroides . Microbiology 154:296–305
    [Google Scholar]
  29. Xia Q., Wang T., Taub F., Park Y., Capestany C. A., Lamont R. J., Hackett M. 2007a; Quantitative proteomics of intracellular Porphyromonas gingivalis . Proteomics 7:4323–4337
    [Google Scholar]
  30. Xia Q., Wang T., Park Y., Lamont R. J., Hackett M. 2007b; Differential quantitative proteomics of Porphyromonas gingivalis by linear ion trap mass spectrometry: non-label methods comparison, q -values and LOWESS curve fitting. Int J Mass Spectrom 259:105–116
    [Google Scholar]
  31. Yarrison G., Young D. W., Choules G. L. 1972; Glutamate dehydrogenase from Mycoplasma laidlawii . J Bacteriol 110:494–503
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024968-0
Loading
/content/journal/micro/10.1099/mic.0.024968-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error