1887

Abstract

Isolates of ‘’ were recovered after ice-affinity selection of summer-collected soils. ‘’ DL7 was further characterized and shown to have ice nucleation activity (INA), a property that allows the crystallization of ice at temperatures close to the melting point, effectively preventing the supercooling of water. INA was optimally detected after culturing at temperatures consistent with psychrophilic growth. The sequence encoding the ‘’ ice nucleation protein (INP) was obtained using both PCR and chromosome walking. When expressed in the resulting recombinants had INA. The ‘’ sequence, dubbed , is clearly related to previously cloned INP genes, but it shows greater divergence. Sequence analysis suggests that there are two opposite flat surfaces, one relatively hydrophobic that likely serves as an ice template, and the other that could function as a complementary face to facilitate interprotein interaction for ice-step formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025114-0
2009-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1164.html?itemId=/content/journal/micro/10.1099/mic.0.025114-0&mimeType=html&fmt=ahah

References

  1. Abe K., Watabe S., Emori Y., Watanabe M., Arai S. 1989; An ice nucleation active gene of Erwinia ananas . Sequence similarity to those of Pseudomonas species and regions required for ice nucleation activity. FEBS Lett 258:297–300
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  3. Borchardt H. J., Daniels F. 1957; The application of differential thermal analysis to the study of reaction kinetics. J Am Chem Soc 79:41–46
    [Google Scholar]
  4. Cavicchioli R. 2002; Extremophiles and the search for extraterrestrial life. Astrobiology 2:281–292
    [Google Scholar]
  5. Deininger C. A., Mueller G. M., Wolber P. K. 1988; Immunological characterization of ice nucleation proteins from Pseudomonas syringae , Pseudomonas fluorescens and Erwinia herbicola . J Bacteriol 170:669–675
    [Google Scholar]
  6. Edwards A. R., Van den Bussche R. A., Wichman H. A., Orser C. S. 1994; Unusual pattern of bacterial ice nucleation gene evolution. Mol Biol Evol 11:911–920
    [Google Scholar]
  7. Felsenstein J. 2004 phylip (phylogeny inference package) version 3.6. Department of Genome Sciences University of Washington; Seattle:
    [Google Scholar]
  8. Graether S. P., Jia Z. 2001; Modeling Pseudomonas syringae ice-nucleation protein as a beta-helical protein. Biophys J 80:1169–1173
    [Google Scholar]
  9. Graham L. A., Liou Y. C., Walker V. K., Davies P. L. 1997; Hyperactive antifreeze protein from beetles. Nature 388:727–728
    [Google Scholar]
  10. Kajava A. V., Lindow S. E. 1993; A model of three-dimensional structure of ice nucleation proteins. J Mol Biol 232:709–717
    [Google Scholar]
  11. Kobashigawa Y., Nishimiya Y., Miura K., Ohgiya S., Tsuda S. 2005; A part of ice nucleation protein exhibits the ice-binding ability. FEBS Lett 579:1493–1497
    [Google Scholar]
  12. Kozloff L. M., Schofield M. A., Lute M. 1983; Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola . J Bacteriol 153:222–231
    [Google Scholar]
  13. Kuiper M. J., Davies P. L., Walker V. K. 2001; A theoretical model of a plant antifreeze protein from Lolium perenne . Biophys J 81:3560–3565
    [Google Scholar]
  14. Kumar G. S., Jagannadham M. V., Ray M. K. 2002; Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the antarctic psychrotrophic bacterium Pseudomonas syringae . J Bacteriol 184:6746–6749
    [Google Scholar]
  15. Lindow S. E., Arny D. C., Upper C. D. 1978; Distribution of ice nucleation-active bacteria on plants in nature. Appl Environ Microbiol 36:831–838
    [Google Scholar]
  16. Maki L. R., Galyan E. L., Chang-Chien M. M., Caldwell D. R. 1974; Ice nucleation induced by Pseudomonas syringae . Appl Microbiol 28:456–459
    [Google Scholar]
  17. Nemecek-Marshall M., Laduca R., Fall R. 1993; High-level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature. J Bacteriol 175:4062–4070
    [Google Scholar]
  18. Phelps P., Giddings T. H., Prochoda M., Fall R. 1986; Release of cell-free ice nuclei by Erwinia herbicola . J Bacteriol 167:496–502
    [Google Scholar]
  19. Pruppacher H. R., Klett J. D. 1997 Microphysics of Clouds and Precipitation , 2nd edn. New York: Springer;
  20. Raaijmakers J. M., Vlami M., de Souza J. T. 2002; Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547
    [Google Scholar]
  21. Schuster-Böckler B., Schultz J., Rahmann S. 2004; HMM logos for visualization of protein families. BMC Bioinformatics 5: 7
    [Google Scholar]
  22. Shivaji S., Rao N. S., Saisree L., Sheth V., Reddy G. S., Bhargava P. M. 1989; Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl Environ Microbiol 55:767–770
    [Google Scholar]
  23. Stallwood B., Shears J., Williams P. A., Hughes K. A. 2005; Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. J Appl Microbiol 99:794–802
    [Google Scholar]
  24. Tyshenko M. G., Doucet D., Davies P. L., Walker V. K. 1997; The antifreeze potential of the spruce budworm thermal hysteresis protein. Nat Biotechnol 15:887–890
    [Google Scholar]
  25. Vali G. 1971; Quantitative evaluation of experimental results on the heterogenerous freezing nucleation of supercooled liquid. J Atmos Sci 28:402–409
    [Google Scholar]
  26. Vali G. 1995 Principles of Ice Nucleation: Biological Ice Nucleation and its Applications London: APS Press;
  27. Villeret V., Chessa J. P., Gerday C., Van Beeumen J. 1997; Preliminary crystal structure determination of the alkaline protease from the Antarctic psychrophile Pseudomonas aeruginosa . Protein Sci 6:2462–2464
    [Google Scholar]
  28. Walker V. K., Palmer G. R., Voordouw G. 2006; Freeze-thaw tolerance and clues to the winter survival of a soil community. Appl Environ Microbiol 72:1784–1792
    [Google Scholar]
  29. Walker V. K., Wilson S. L., Wu Z., Miao D. N., Zeng H., Ripmeester J. A., Palmer G. R. 2008; Screening microbes for ice-associating proteins with potential application as ‘green inhibitors’ for gas hydrates. In Emerging Environmental Technologies pp 29–41 Edited by Shah V. New York: Springer;
    [Google Scholar]
  30. Warren G., Corotto L. 1989; The consensus sequence of ice nucleation proteins from Erwinia herbicola , Pseudomonas fluorescens and Pseudomonas syringae . Gene 85:239–242
    [Google Scholar]
  31. Wilson S. L., Kelley D. L., Walker V. K. 2006; Ice-active characteristics of soil bacteria selected by ice-affinity. Environ Microbiol 8:1816–1824
    [Google Scholar]
  32. Wolber P., Warren G. 1989; Bacterial ice-nucleation proteins. Trends Biochem Sci 14:179–182
    [Google Scholar]
  33. Wolber P. K., Deininger C. A., Southworth M. W., Vandekerckhove J., van Montagu M., Warren G. J. 1986; Identification and purification of a bacterial ice-nucleation protein. Proc Natl Acad Sci U S A 83:7256–7260
    [Google Scholar]
  34. Wynn-Williams D. D. 1983; Distribution and characteristics of Chromobacterium in the maritime and sub-antarctic. Polar Biol 2:101–108
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025114-0
Loading
/content/journal/micro/10.1099/mic.0.025114-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error