RT Journal Article SR Electronic(1) A1 Zhou, Meixian A1 Wu, HuiYR 2009 T1 Glycosylation and biogenesis of a family of serine-rich bacterial adhesins JF Microbiology, VO 155 IS 2 SP 317 OP 327 DO https://doi.org/10.1099/mic.0.025221-0 PB Microbiology Society, SN 1465-2080, AB Glycosylation of bacterial proteins is an important process for bacterial physiology and pathophysiology. Both O- and N-linked glycan moieties have been identified in bacterial glycoproteins. The N-linked glycosylation pathways are well established in Gram-negative bacteria. However, the O-linked glycosylation pathways are not well defined due to the complex nature of known O-linked glycoproteins in bacteria. In this review, we examine a new family of serine-rich O-linked glycoproteins which are represented by fimbriae-associated adhesin Fap1 of Streptococcus parasanguinis and human platelet-binding protein GspB of Streptococcus gordonii. This family of glycoproteins is conserved in streptococcal and staphylococcal species. A gene cluster coding for glycosyltransferases and accessory Sec proteins has been implicated in the protein glycosylation. A two-step glycosylation model is proposed. Two glycosyltransferases interact with each other and catalyse the first step of the protein glycosylation in the cytoplasm; the cross-talk between glycosylation-associated proteins and accessory Sec components mediates the second step of the protein glycosylation, an emerging mechanism for bacterial O-linked protein glycosylation. Dissecting the molecular mechanism of this conserved biosynthetic pathway offers opportunities to develop new therapeutic strategies targeting this previously unrecognized pathway, as serine-rich glycoproteins have been shown to play a role in bacterial pathogenesis., UL https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.025221-0