1887

Abstract

Glucose is the favoured carbon source for , and the Leloir pathway for galactose utilization is only induced in the presence of galactose during glucose-derepressed conditions. The goal of this study was to investigate the dynamics of glucose–galactose transitions. To this end, well-controlled, glucose-limited chemostat cultures were switched to galactose-excess conditions. Surprisingly, galactose was not consumed upon a switch to galactose excess under anaerobic conditions. However, the transcripts of the Leloir pathway were highly increased upon galactose excess under both aerobic and anaerobic conditions. Protein and enzyme-activity assays showed that impaired galactose consumption under anaerobiosis coincided with the absence of the Leloir-pathway proteins. Further results showed that absence of protein synthesis was not caused by glucose-mediated translation inhibition. Analysis of adenosine nucleotide pools revealed a fast decrease of the energy charge after the switch from glucose to galactose under anaerobic conditions. Similar results were obtained when glucose–galactose transitions were analysed under aerobic conditions with a respiratory-deficient strain. It is concluded that under fermentative conditions, the energy charge was too low to allow synthesis of the Leloir proteins. Hence, this study conclusively shows that the intracellular energy status is an important factor in the metabolic flexibility of upon changes in its environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025775-0
2009-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1340.html?itemId=/content/journal/micro/10.1099/mic.0.025775-0&mimeType=html&fmt=ahah

References

  1. Ashe M. P., De Long S. K., Sachs A. B. 2000; Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell 11:833–848
    [Google Scholar]
  2. Atkinson D. E. 1968; The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034
    [Google Scholar]
  3. Barnett J. A., Payne R. W., Yarrow D. 1990 Yeasts: Characteristics and Identification Cambridge: Cambridge University Press;
  4. Beckmann J. D., Ljungdahl P. O., Lopez J. L., Trumpower B. L. 1987; Isolation and characterization of the nuclear gene encoding the Rieske iron–sulfur protein ( RIP1 ) from Saccharomyces cerevisiae . J Biol Chem 262:8901–8909
    [Google Scholar]
  5. Bergmeyer H. A., Michal G. 1974 Methods of Enzymatic Analysis New York: Academic Press;
  6. Bergmeyer H. C., Bergmeyer J., Grass M. 1985 Methods in Enzymatic Analysis Weinheim: Verlag Chemie;
  7. Bevan P., Douglas H. C. 1969; Genetic control of phosphoglucomutase variants in Saccharomyces cerevisiae . J Bacteriol 98:532–535
    [Google Scholar]
  8. Canelas A. B., van Gulik W. M., Heijnen J. J. 2008; Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol Bioeng 100:734–743
    [Google Scholar]
  9. Colowick S. P., Kaplan N. O. 1967 Methods in Enzymology V New York: Academic Press;
  10. de Jongh W. A., Bro C., Ostergaard S., Regenberg B., Olsson L., Nielsen J. 2008; The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae . Biotechnol Bioeng 101:317–326
    [Google Scholar]
  11. Diderich J. A., Raamsdonk L. M., Kuiper A., Kruckeberg A. L., Berden J. A., Teixeira de Mattos M. J., van Dam K. 2002; Effects of a hexokinase II deletion on the dynamics of glycolysis in continuous cultures of Saccharomyces cerevisiae . FEMS Yeast Res 2:165–172
    [Google Scholar]
  12. Ferea T. L., Botstein D., Brown P. O., Rosenzweig R. F. 1999; Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci U S A 96:9721–9726
    [Google Scholar]
  13. Francois J., Parrou J. L. 2001; Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae . FEMS Microbiol Rev 25:125–145
    [Google Scholar]
  14. Fukuhara H. 2003; The Kluyver effect revisited. FEMS Yeast Res 3:327–331
    [Google Scholar]
  15. Gancedo J. M. 1998; Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361
    [Google Scholar]
  16. Jansen M. L., Daran-Lapujade P., de Winde J. H., Piper M. D., Pronk J. T. 2004; Prolonged maltose-limited cultivation of Saccharomyces cerevisiae selects for cells with improved maltose affinity and hypersensitivity. Appl Environ Microbiol 70:1956–1963
    [Google Scholar]
  17. Johnston M., Flick J. S., Pexton T. 1994; Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae . Mol Cell Biol 14:3834–3841
    [Google Scholar]
  18. Klinke H. B., Ahring B. K., Schmidt A. S., Thomsen A. B. 2002; Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82:15–26
    [Google Scholar]
  19. Kuhn K. M., DeRisi J. L., Brown P. O., Sarnow P. 2001; Global and specific translational regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer from a fermentable to a nonfermentable carbon source. Mol Cell Biol 21:916–927
    [Google Scholar]
  20. Lange H. C., Eman M., van Zuijlen G., Visser D., van Dam J. C., Frank J., de Mattos M. J., Heijnen J. J. 2001; Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae . Biotechnol Bioeng 75:406–415
    [Google Scholar]
  21. Leuther K. K., Johnston S. A. 1992; Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science 256:1333–1335
    [Google Scholar]
  22. Majumdar S., Ghatak J., Mukherji S., Bhattacharjee H., Bhaduri A. 2004; UDPgalactose 4-epimerase from Saccharomyces cerevisiae . A bifunctional enzyme with aldose 1-epimerase activity. Eur J Biochem 271:753–759
    [Google Scholar]
  23. Martinez-Pastor M. T., Estruch F. 1996; Sudden depletion of carbon source blocks translation, but not transcription, in the yeast Saccharomyces cerevisiae . FEBS Lett 390:319–322
    [Google Scholar]
  24. Mashego M. R., Jansen M. L., Vinke J. L., van Gulik W. M., Heijnen J. J. 2005; Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats. FEMS Yeast Res 5:419–430
    [Google Scholar]
  25. Masuda C. A., Xavier M. A., Mattos K. A., Galina A., Montero-Lomeli M. 2001; Phosphoglucomutase is an in vivo lithium target in yeast. J Biol Chem 276:37794–37801
    [Google Scholar]
  26. Meiring H. D., van der Heeft E., ten Hove G. J., de Jong A. P. J. M. 2002; Nanoscale LC-MS( n ): technical design and applications to peptide and protein analysis. J Sep Sci 25:557–568
    [Google Scholar]
  27. Nilsson A., Norbeck J., Oelz R., Blomberg A., Gustafsson L. 2001; Fermentative capacity after cold storage of baker's yeast is dependent on the initial physiological state but not correlated to the levels of glycolytic enzymes. Int J Food Microbiol 71:111–124
    [Google Scholar]
  28. Ostergaard S., Olsson L., Johnston M., Nielsen J. 2000; Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat Biotechnol 18:1283–1286
    [Google Scholar]
  29. Ostergaard S., Olsson L., Nielsen J. 2001a; In vivo dynamics of galactose metabolism in Saccharomyces cerevisiae : metabolic fluxes and metabolite levels. Biotechnol Bioeng 73:412–425
    [Google Scholar]
  30. Ostergaard S., Walløe K. O., Gomes S. G., Olsson L., Nielsen J. 2001b; The impact of GAL6 , GAL80 , and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae . FEMS Yeast Res 1:47–55
    [Google Scholar]
  31. Palmqvist E., Grage H., Meinander N. Q., Hahn-Hagerdal B. 1999; Main and interaction effects of acetic acid, furfural, and p -hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng 63:46–55
    [Google Scholar]
  32. Parrou J. L., Francois J. 1997; A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem 248:186–188
    [Google Scholar]
  33. Piper M. D., Daran-Lapujade P., Bro C., Regenberg B., Knudsen S., Nielsen J., Pronk J. T. 2002; Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae . J Biol Chem 277:37001–37008
    [Google Scholar]
  34. Platt A., Reece R. J. 1998; The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J 17:4086–4091
    [Google Scholar]
  35. Platt A., Ross H. C., Hankin S., Reece R. J. 2000; The insertion of two amino acids into a transcriptional inducer converts it into a galactokinase. Proc Natl Acad Sci U S A 97:3154–3159
    [Google Scholar]
  36. Postma E., Kuiper A., Tomasouw W. F., Scheffers W. A., van Dijken J. P. 1989; Competition for glucose between the yeasts Saccharomyces cerevisiae and Candida utilis . Appl Environ Microbiol 55:3214–3220
    [Google Scholar]
  37. Raamsdonk L. M., Diderich J. A., Kuiper A., van Gaalen M., Kruckeberg A. L., Berden J. A., van Dam K. 2001; Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene. Yeast 18:1023–1033
    [Google Scholar]
  38. Rabelo S. C., Filho R. M., Costa A. C. 2008; A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production. Appl Biochem Biotechnol 144:87–100
    [Google Scholar]
  39. Raghevendran V., Gombert A. K., Christensen B., Kötter P., Nielsen J. 2004; Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose. Yeast 21:769–779
    [Google Scholar]
  40. Sauer U., Schlattner U. 2004; Inverse metabolic engineering with phosphagen kinase systems improves the cellular energy state. Metab Eng 6:220–228
    [Google Scholar]
  41. Snoek I. S., Steensma H. Y. 2006; Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6:393–403
    [Google Scholar]
  42. Stephanopoulos G. N., Aristidou A. A., Nielsen J. 1998 Metabolic Engineering. Principles and Methodologies San Diego, CA: Elsevier;
  43. Sun Y., Cheng J. 2002; Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11
    [Google Scholar]
  44. Thomsson E., Gustafsson L., Larsson C. 2005; Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures. Appl Environ Microbiol 71:3007–3013
    [Google Scholar]
  45. Uesono Y., Ashe M. P., Toh.E A. 2004; Simultaneous yet independent regulation of actin cytoskeletal organization and translation initiation by glucose in Saccharomyces cerevisiae . Mol Biol Cell 15:1544–1556
    [Google Scholar]
  46. van den Berg M. A., Jong-Gubbels P., Kortland C. J., van Dijken J. P., Pronk J. T., Steensma H. Y. 1996; The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271:28953–28959
    [Google Scholar]
  47. van den Brink J., Daran-Lapujade P., Pronk J. T., de Winde J. H. 2008; New insights into the Saccharomyces cerevisiae fermentation switch: dynamic transcriptional response to anaerobicity and glucose-excess. BMC Genomics 9:100
    [Google Scholar]
  48. van Dijken J. P., Bauer J., Brambilla L., Duboc P., Francois J. M., Gancedo C., Giuseppin M. L., Heijnen J. J., Hoare M. other authors 2000; An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26:706–714
    [Google Scholar]
  49. van Hoek P., van Dijken J. P., Pronk J. T. 2000; Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae . Enzyme Microb Technol 26:724–736
    [Google Scholar]
  50. Verduyn C., Postma E., Scheffers W. A., van Dijken J. P. 1990; Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:405–412
    [Google Scholar]
  51. Verduyn C., Stouthamer A. H., Scheffers W. A., van Dijken J. P. 1991; A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek 59:49–63
    [Google Scholar]
  52. Verduyn C., Postma E., Scheffers W. A., van Dijken J. P. 1992; Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517
    [Google Scholar]
  53. Wu Y., Reece R. J., Ptashne M. 1996; Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J 15:3951–3963
    [Google Scholar]
  54. Wu L., Mashego M. R., van Dam J. C., Proell A. M., Vinke J. L., Ras C., van Winden W. A., van Gulik W. M., Heijnen J. J. 2005; Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 336:164–171
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025775-0
Loading
/content/journal/micro/10.1099/mic.0.025775-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error