1887

Abstract

OmpA1 is the major outer membrane protein of the Gram-negative anaerobic pathogen . We identified three additional conserved homologues () and three less homologous like genes (s , and ) in . We constructed an disruption mutant in 638R (WAL6 Ω) using insertion-mediated mutagenesis. WAL6 Ω formed much smaller colonies and had smaller, rounder forms on Gram stain analysis than the parental strain or other unrelated disruption mutants. SDS-PAGE and Western blot analysis (with anti-OmpA1 IgY) of the OMP patterns of WAL6 Ω grown in both high- and low-salt media did not reveal any other OmpA proteins even under osmotic stress. An deletant (WAL186Δ) was constructed using a two-step double-crossover technique, and an ‘reinsertant’, WAL360+, was constructed by reinserting the gene into WAL186Δ. WAL186Δ was significantly more sensitive to exposure to SDS, high salt and oxygen than the parental (WAL108) or reinsertant (WAL360+) strain. No significant change was seen in MICs of a variety of antimicrobials for either WAL6 Ω or WAL186Δ compared to WAL108. RT-PCR revealed that all of the genes are transcribed in the parental strain and in the disruption mutant, but, as expected, is not transcribed in WAL186Δ. Unexpectedly, is also not transcribed in WAL186Δ. A predicted structure indicated that among the four OmpA homologues, the barrel portion is more conserved than the loops, except for specific conserved patches on loop 1 and loop 3. The presence of multiple copies of such similar genes in one organism would suggest a critical role for this protein in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025858-0
2009-08-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2694.html?itemId=/content/journal/micro/10.1099/mic.0.025858-0&mimeType=html&fmt=ahah

References

  1. Arora A., Rinehart D., Szabo G., Tamm L. K. 2000; Refolded outer membrane protein A of Escherichia coli forms ion channels with two conductance states in planar lipid bilayers. J Biol Chem 275:1594–1600
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987; Analysis of Proteins. In Current Protocols in Molecular Biology New York: John Wiley & Sons;
    [Google Scholar]
  3. Baughn A. D., Malamy M. H. 2002; A mitochondrial-like aconitase in the bacterium Bacteroides fragilis: implications for the evolution of the mitochondrial Krebs cycle. Proc Natl Acad Sci U S A 99:4662–4667
    [Google Scholar]
  4. Bayley D. P., Rocha E. R., Smith C. J. 2000; Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett 193:149–154
    [Google Scholar]
  5. Bratu S., Landman D., Martin D. A., Georgescu C., Quale J. 2008; Correlation of antimicrobial resistance with β-lactamases, the OmpA-like porin, and efflux pumps in clinical isolates of Acinetobacter baumannii endemic to New York City. Antimicrob Agents Chemother 52:2999–3005
    [Google Scholar]
  6. Brinkman F. S., Bains M., Hancock R. E. 2000; The amino terminus of Pseudomonas aeruginosa outer membrane protein OprF forms channels in lipid bilayer membranes: correlation with a three-dimensional model. J Bacteriol 182:5251–5255
    [Google Scholar]
  7. Cassel S. L., Sutterwala F. S., Flavell R. A. 2008; The tiny conductor: immune regulation via commensal organisms. Cell Host Microbe 3:340–341
    [Google Scholar]
  8. Cerdeño-Tárraga A. M., Patrick S., Crossman L. C., Blakely G., Abratt V., Lennard N., Poxton I., Duerden B., Harris B. other authors 2005; Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307:1463–1465
    [Google Scholar]
  9. Chen R., Schmidmayr W., Kramer C., Chen-Schmeisser U., Henning U. 1980; Primary structure of major outer membrane protein II (OmpA protein) of Escherichia coli K-12. Proc Natl Acad Sci U S A 77:4592–4596
    [Google Scholar]
  10. Cheng Q., Yu M. C., Reeves A. R., Salyers A. A. 1995; Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate. J Bacteriol 177:3721–3727
    [Google Scholar]
  11. Cohen S. P., McMurry L. M., Levy S. B. 1988; marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli . J Bacteriol 170:5416–5422
    [Google Scholar]
  12. Comstock L. E., Kasper D. L. 2006; Bacterial glycans: key mediators of diverse host immune responses. Cell 126:847–850
    [Google Scholar]
  13. Comstock L. E., Coyne M. J., Tzianabos A. O., Pantosti A., Onderdonk A. B., Kasper D. L. 1999; Analysis of a capsular polysaccharide biosynthesis locus of Bacteroides fragilis . Infect Immun 67:3525–3532
    [Google Scholar]
  14. Costello G. M., Vipond R., MacIntyre S. 1996; Aeromonas salmonicida possesses two genes encoding homologs of the major outer membrane protein, OmpA. J Bacteriol 178:1623–1630
    [Google Scholar]
  15. Coyne M. J., Chatzidaki-Livanis M., Paoletti L. C., Comstock L. E. 2008; Role of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont Bacteroides fragilis . Proc Natl Acad Sci U S A 105:13099–13104
    [Google Scholar]
  16. Finegold S. M., Wexler H. M. 1996; Present studies of therapy for anaerobic infections. Clin Infect Dis 23:Suppl. 1S9–S14
    [Google Scholar]
  17. Gallagher S. 1987; Analysis of proteins. In Current Protocols in Molecular Biology Edited by Ausubel F. M. New York: John Wiley and Sons;
    [Google Scholar]
  18. Glaser F., Pupko T., Paz I., Bell R. E., Bechor-Shental D., Martz E., Ben-Tal N. 2003; ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19:163–164
    [Google Scholar]
  19. Gotoh N., Wakebe H., Yoshihara E., Nakae T., Nishino T. 1989; Role of protein F in maintaining structural integrity of the Pseudomonas aeruginosa outer membrane. J Bacteriol 171:983–990
    [Google Scholar]
  20. Huang S. H., Stins M. F., Kim K. S. 2000; Bacterial penetration across the blood-brain barrier during the development of neonatal meningitis. Microbes Infect 2:1237–1244
    [Google Scholar]
  21. Imai M., Murakami Y., Nagano K., Nakamura H., Yoshimura F. 2005; Major outer membrane proteins from Porphyromonas gingivalis: strain variation, distribution, and clinical significance in periradicular lesions. Eur J Oral Sci 113:391–399
    [Google Scholar]
  22. Iwami J., Murakami Y., Nagano K., Nakamura H., Yoshimura F. 2007; Further evidence that major outer membrane proteins homologous to OmpA in Porphyromonas gingivalis stabilize bacterial cells. Oral Microbiol Immunol 22:356–360
    [Google Scholar]
  23. Kanazawa K., Kobayashi Y., Nakano H., Sakurai M., Gotoh N., Nishino T. 1995; Identification of three porins in the outer membrane of Bacteroides fragilis . FEMS Microbiol Lett 127:181–186
    [Google Scholar]
  24. Kelley L. A., MacCallum R. M., Sternberg M. J. 2000; Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520
    [Google Scholar]
  25. Klesney-Tait J., Hiltke T. J., Maciver I., Spinola S. M., Radolf J. D., Hansen E. J. 1997; The major outer membrane protein of Haemophilus ducreyi consists of two OmpA homologs. J Bacteriol 179:1764–1773
    [Google Scholar]
  26. Kuwahara T., Yamashita A., Hirakawa H., Nakayama H., Toh H., Okada N., Kuhara S., Hattori M., Hayashi T., Ohnishi Y. 2004; Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci U S A 101:14919–14924
    [Google Scholar]
  27. Laemmli U. K., Favre M. 1973; Maturation of the head of bacteriophage T4. DNA packaging events. J Mol Biol 80:575–599
    [Google Scholar]
  28. Landau M., Mayrose I., Rosenberg Y., Glaser F., Martz E., Pupko T., Ben-Tal N. 2005; ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302
    [Google Scholar]
  29. Liu C. H., Lee S. M., Vanlare J. M., Kasper D. L., Mazmanian S. K. 2008; Regulation of surface architecture by symbiotic bacteria mediates host colonization. Proc Natl Acad Sci U S A 105:3951–3956
    [Google Scholar]
  30. Magalashvili L., Pechatnikov I., Wexler H. M., Nitzan Y. 2007; Isolation and characterization of the Omp-PA porin from Porphyromonas asaccharolytica, determination of the omp-PA gene sequence and prediction of Omp-PA protein structure. Anaerobe 13:74–82
    [Google Scholar]
  31. McGowan J. E. Jr 2006; Resistance in nonfermenting Gram-negative bacteria: multidrug resistance to the maximum. Am J Infect Control 34:S29–S37
    [Google Scholar]
  32. Mineoka T., Awano S., Rikimaru T., Kurata H., Yoshida A., Ansai T., Takehara T. 2008; Site-specific development of periodontal disease is associated with increased levels of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in subgingival plaque. J Periodontol 79:670–676
    [Google Scholar]
  33. Morona R., Klose M., Henning U. 1984; Escherichia coli K-12 outer membrane protein (OmpA) as a bacteriophage receptor: analysis of mutant genes expressing altered proteins. J Bacteriol 159:570–578
    [Google Scholar]
  34. Murakami Y., Imai M., Nakamura H., Yoshimura F. 2002; Separation of the outer membrane and identification of major outer membrane proteins from Porphyromonas gingivalis . Eur J Oral Sci 110:157–162
    [Google Scholar]
  35. Nagano K., Read E. K., Murakami Y., Masuda T., Noguchi T., Yoshimura F. 2005; Trimeric structure of major outer membrane proteins homologous to OmpA in Porphyromonas gingivalis . J Bacteriol 187:902–911
    [Google Scholar]
  36. Nakamura K., Mizushima S. 1976; Effects of heating in dodecyl sulfate solution on the conformation and electrophoretic mobility of isolated major outer membrane proteins from Escherichia coli K12. J Biochem 80:1411–1422
    [Google Scholar]
  37. Nelson K. E., Fleischmann R. D., DeBoy R. T., Paulsen I. T., Fouts D. E., Eisen J. A., Daugherty S. C., Dodson R. J., Durkin A. S. other authors 2003; Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol 185:5591–5601
    [Google Scholar]
  38. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6
    [Google Scholar]
  39. Nikaido H. 2001; Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 12:215–223
    [Google Scholar]
  40. Nikaido H., Vaara M. 1985; Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32
    [Google Scholar]
  41. Nikaido H., Nikaido K., Harayama S. 1991; Identification and characterization of porins in Pseudomonas aeruginosa . J Biol Chem 266:770–779
    [Google Scholar]
  42. Odou M. F., Singer E., Romond M. B., Dubreuil L. 1998; Isolation and characterization of a porin-like protein of 45 kilodaltons from Bacteroides fragilis . FEMS Microbiol Lett 166:347–354
    [Google Scholar]
  43. Odou M. F., Singer E., Dubreuil L. 2001; Description of complex forms of a porin in Bacteroides fragilis and possible implication of this protein in antibiotic resistance. Anaerobe 7:219–225
    [Google Scholar]
  44. Prasadarao N. V., Wass C. A., Weiser J. N., Stins M. F., Huang S. H., Kim K. S. 1996; Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect Immun 64:146–153
    [Google Scholar]
  45. Pumbwe L., Piddock L. J. 2000; Two efflux systems expressed simultaneously in multidrug-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother 44:2861–2864
    [Google Scholar]
  46. Pumbwe L., Ueda O., Yoshimura F., Chang A., Smith R. L., Wexler H. M. 2006; Bacteroides fragilis BmeABC efflux systems additively confer intrinsic antimicrobial resistance. J Antimicrob Chemother 58:37–46
    [Google Scholar]
  47. Rawling E. G., Brinkman F. S., Hancock R. E. 1998; Roles of the carboxy-terminal half of Pseudomonas aeruginosa major outer membrane protein OprF in cell shape, growth in low-osmolarity medium, and peptidoglycan association. J Bacteriol 180:3556–3562
    [Google Scholar]
  48. Reeves A. R., D'Elia J. N., Frias J., Salyers A. A. 1996; A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J Bacteriol 178:823–830
    [Google Scholar]
  49. Reeves A. R., Wang G. R., Salyers A. A. 1997; Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron . J Bacteriol 179:643–649
    [Google Scholar]
  50. Rocha E. R., Tzianabos A. O., Smith C. J. 2007; Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis . J Bacteriol 189:8015–8023
    [Google Scholar]
  51. Schirmer T., Cowan S. W. 1993; Prediction of membrane-spanning β-strands and its application to maltoporin. Protein Sci 2:1361–1363
    [Google Scholar]
  52. Shipman J. A., Berleman J. E., Salyers A. A. 2000; Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron . J Bacteriol 182:5365–5372
    [Google Scholar]
  53. Smith S. G., Mahon V., Lambert M. A., Fagan R. P. 2007; A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 273:1–11
    [Google Scholar]
  54. Soulas C., Baussant T., Aubry J. P., Delneste Y., Barillat N., Caron G., Renno T., Bonnefoy J. Y., Jeannin P. 2000; Outer membrane protein A (OmpA) binds to and activates human macrophages. J Immunol 165:2335–2340
    [Google Scholar]
  55. Stintzi A., Marlow D., Palyada K., Naikare H., Panciera R., Whitworth L., Clarke C. 2005; Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni . Infect Immun 73:1797–1810
    [Google Scholar]
  56. Struyve M., Moons M., Tommassen J. 1991; Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol 218:141–148
    [Google Scholar]
  57. Sugawara E., Nikaido H. 1994; OmpA protein of Escherichia coli outer membrane occurs in open and closed channel forms. J Biol Chem 269:17981–17987
    [Google Scholar]
  58. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  59. Ullstrom C. A., Siehnel R., Woodruff W., Steinbach S., Hancock R. E. 1991; Conservation of the gene for outer membrane protein OprF in the family Pseudomonadaceae: sequence of the Pseudomonas syringae oprF gene. J Bacteriol 173:768–775
    [Google Scholar]
  60. Veith P. D., Talbo G. H., Slakeski N., Reynolds E. C. 2001; Identification of a novel heterodimeric outer membrane protein of Porphyromonas gingivalis by two-dimensional gel electrophoresis and peptide mass fingerprinting. Eur J Biochem 268:4748–4757
    [Google Scholar]
  61. Vogel H., Jahnig F. 1986; Models for the structure of outer-membrane proteins of Escherichia coli derived from raman spectroscopy and prediction methods. J Mol Biol 190:191–199
    [Google Scholar]
  62. von Heijne G. 1983; Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17–21
    [Google Scholar]
  63. von Heijne G. 1985; Signal sequences. The limits of variation. J Mol Biol 184:99–105
    [Google Scholar]
  64. Wang Y. 2002; The function of OmpA in Escherichia coli . Biochem Biophys Res Commun 292:396–401
    [Google Scholar]
  65. Wang Y., Kim K. S. 2002; Role of OmpA and IbeB in Escherichia coli K1 invasion of brain microvascular endothelial cells in vitro and in vivo. Pediatr Res 51:559–563
    [Google Scholar]
  66. Wexler H. M. 1991; Susceptibility testing of anaerobic bacteria: myth, magic, or method?. Clin Microbiol Rev 4:470–484
    [Google Scholar]
  67. Wexler H. M., Molitoris E., Murray P. R., Washington J., Zabransky R. J., Edelstein P. H., Finegold S. M. 1996; Comparison of spiral gradient endpoint and agar dilution methods for susceptibility testing of anaerobic bacteria: a multilaboratory collaborative evaluation. J Clin Microbiol 34:170–174
    [Google Scholar]
  68. Wexler H. M., Read E. K., Tomzynski T. J. 2002a; Characterization of omp200, a porin gene complex from Bacteroides fragilis: omp121 and omp71, gene sequence, deduced amino acid sequence and predictions of porin structure. Gene 283:95–105
    [Google Scholar]
  69. Wexler H. M., Read E. K., Tomzynski T. J. 2002b; Identification of an OmpA protein from Bacteroides fragilis: ompA gene sequence, OmpA amino acid sequence and predictions of protein structure. Anaerobe 8:180–191
    [Google Scholar]
  70. Wong C., Sridhara S., Bardwell J. C., Jakob U. 2000; Heating greatly speeds Coomasie Blue staining and destaining. Biotechniques 28:426–432
    [Google Scholar]
  71. Woodruff W. A., Hancock R. E. 1989; Pseudomonas aeruginosa outer membrane protein F: structural role and relationship to the Escherichia coli OmpA protein. J Bacteriol 171:3304–3309
    [Google Scholar]
  72. Yoshihara E., Nakae T. 1989; Identification of porins in the outer membrane of Pseudomonas aeruginosa that form small diffusion pores. J Biol Chem 264:6297–6301
    [Google Scholar]
  73. Yoshimura F., Murakami Y., Nishikawa K., Hasegawa Y., Kawaminami S. 2009; Surface components of Porphyromonas gingivalis . J Periodontal Res 44:1–12
    [Google Scholar]
  74. Zakharian E., Reusch R. N. 2003; Outer membrane protein A of Escherichia coli forms temperature-sensitive channels in planar lipid bilayers. FEBS Lett 555:229–235
    [Google Scholar]
  75. Zakharian E., Reusch R. N. 2005; Kinetics of folding of Escherichia coli OmpA from narrow to large pore conformation in a planar bilayer. Biochemistry 44:6701–6707
    [Google Scholar]
  76. Zhang R., Yang L., Cai J. C., Zhou H. W., Chen G. X. 2008; High-level carbapenem resistance in a Citrobacter freundii clinical isolate is due to a combination of KPC-2 production and decreased porin expression. J Med Microbiol 57:332–337
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025858-0
Loading
/content/journal/micro/10.1099/mic.0.025858-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error