1887

Abstract

The tellurium oxyanion tellurite is toxic for most organisms and it seems to alter a number of intracellular targets. In this work the toxic effects of tellurite upon [4Fe–4S] cluster-containing dehydratases was studied. Reactive oxygen species (ROS)-sensitive fumarase A (FumA) and aconitase B (AcnB) as well as ROS-resistant fumarase C (FumC) and aconitase A (AcnA) were assayed in cell-free extracts from tellurite-exposed cells in both the presence and absence of oxygen. While over 90 % of FumA and AcnB activities were lost in the presence of oxygen, no enzyme inactivation was observed in anaerobiosis. This result was not dependent upon protein biosynthesis, as determined using translation-arrested cells. Enzyme activity of purified FumA and AcnB was inhibited when exposed to an superoxide-generating, tellurite-reducing system (ITRS). No inhibitory effect was observed when tellurite was omitted from the ITRS. and reconstitution experiments with tellurite-damaged FumA and AcnB suggested that tellurite effects involve [Fe–S] cluster disabling. In fact, after exposing FumA to ITRS, released ferrous ion from the enzyme was demonstrated by spectroscopic analysis using the specific Fe chelator 2,2′-bipyridyl. Subsequent spectroscopic paramagnetic resonance analysis of FumA exposed to ITRS showed the characteristic signal of an oxidatively inactivated [3Fe–4S] cluster. These results suggest that tellurite inactivates enzymes of this kind via a superoxide-dependent disabling of their [4Fe–4S] catalytic clusters.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026260-0
2009-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1840.html?itemId=/content/journal/micro/10.1099/mic.0.026260-0&mimeType=html&fmt=ahah

References

  1. Alonso G., Gomes C., González C., Rodríguez-Lemoine V. 2000; On the mechanism of resistance to channel-forming colicins (PacB) and tellurite, encoded by plasmid Mip233 (IncHI3. FEMS Microbiol Lett 192:257–261
    [Google Scholar]
  2. Borsetti F., Tremaroli V., Michelacci F., Borghese R., Winterstein C., Daldal F., Zannoni D. 2005; Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions. Res Microbiol 156:807–813
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  4. Brown N. M., Kennedy M. C., Antholine W. E., Eisenstein R. S., Walden W. E. 2002; Detection of a [3Fe–4S] cluster intermediate of cytosolic aconitase in yeast expressing iron regulatory protein 1. Insights into the mechanism of Fe–S cluster cycling. J Biol Chem 277:7246–7254
    [Google Scholar]
  5. Calderón I. L., Arenas F. A., Pérez J. M., Fuentes D. E., Araya M. A., Saavedra C. P., Tantaleán J. C., Pichuantes S. E., Youderian P. A., Vásquez C. C. 2006; Catalases are NAD(P)H-dependent tellurite reductases. PLoS One 1:e70
    [Google Scholar]
  6. Djaman O., Outten W., Imlay J. A. 2004; Repair of oxidized iron–sulfur clusters in Escherichia coli . J Biol Chem 279:44590–44599
    [Google Scholar]
  7. Flint D. H., Smyk-Randall E., Tuminello J. F., Draczynska-Lusiak B., Brown O. R. 1993a; The inactivation of dihydroxy-acid dehydratase in Escherichia coli treated with hyperbaric oxygen occurs because of the destruction of its Fe–S cluster, but the enzyme remains in the cell in a form that can be reactivated. J Biol Chem 268:25547–25552
    [Google Scholar]
  8. Flint D. H., Tuminello J. F., Emptage M. 1993b; The inactivation of Fe–S cluster containing hydro-lyases by superoxide. J Biol Chem 268:22369–22376
    [Google Scholar]
  9. Fu W., Jack R., Morgan T., Dean D., Johnson M. 1994; nifU gene product from Azotobacter vinelandii is a homodimer that contains two identical [2Fe–2S] clusters. Biochemistry 33:13455–13463
    [Google Scholar]
  10. Gardner P. R., Fridovich I. 1991; Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266:19328–19333
    [Google Scholar]
  11. Imlay J. A. 2003; Pathways of oxidative damage. Annu Rev Microbiol 57:395–418
    [Google Scholar]
  12. Kuo C. F., Mashino T., Fridovich I. 1987; α , β -Dihydroxyisovalerate dehydratase. A superoxide-sensitive enzyme. J Biol Chem 262:4724–4727
    [Google Scholar]
  13. Liochev S. I., Fridovich I. 1993; Modulation of the fumarases of Escherichia coli in response to oxidative stress. Arch Biochem Biophys 301:379–384
    [Google Scholar]
  14. Lithgow J. K., Hayhurst E. J., Cohen G., Aharonowitz Y., Foster S. J. 2004; Role of a cysteine synthase in Staphylococcus aureus . J Bacteriol 186:1579–1590
    [Google Scholar]
  15. Loiseau L., Ollagnier-de-Choudens S., Nachin L., Fontecave M., Barras F. 2003; Biogenesis of Fe–S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem 278:38352–38359
    [Google Scholar]
  16. Massey V. 1994; Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem 269:22459–22462
    [Google Scholar]
  17. Messner K. R., Imlay J. A. 1999; The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli . J Biol Chem 274:10119–10128
    [Google Scholar]
  18. Messner K. R., Imlay J. A. 2002; Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem 277:42563–42571
    [Google Scholar]
  19. O'Gara J. P., Gomelsky M., Kaplan S. 1997; Identification and molecular genetic analysis of multiple loci contributing to high-level tellurite resistance in Rhodobacter sphaeroides 2.4.1. Appl Environ Microbiol 63:4713–4720
    [Google Scholar]
  20. Outten F. W., Wood M. J., Muñoz F. M., Storz G. 2003; The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe–S cluster assembly in Escherichia coli . J Biol Chem 278:45713–45719
    [Google Scholar]
  21. Pérez J. M., Calderón I. L., Arenas F. A., Fuentes D. E., Pradenas G. A., Fuentes E. L., Sandoval J. M., Castro M. E., Elías A. O., Vásquez C. C. 2007; Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS One 2:e211
    [Google Scholar]
  22. Pérez J. M., Arenas F. A., Pradenas G. A., Sandoval J. M., Vásquez C. C. 2008; Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J Biol Chem 283:7346–7353
    [Google Scholar]
  23. Ramírez A., Castañeda M., Xiqui M. L., Sosa A., Baca B. E. 2006; Identification, cloning and characterization of cysK , the gene encoding O -acetylserine (thiol)-lyase from Azospirillum brasilense , which is involved in tellurite resistance. FEMS Microbiol Lett 261:272–279
    [Google Scholar]
  24. Refsgaard H. H., Tsai L., Stadtman E. R. 2000; Modifications of proteins by polyunsaturated fatty acid peroxidation products. Proc Natl Acad Sci U S A 97:611–616
    [Google Scholar]
  25. Rojas D. M., Vásquez C. C. 2005; Sensitivity to potassium tellurite of Escherichia coli cells deficient in CSD, CsdB and IscS cysteine desulfurases. Res Microbiol 156:465–471
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  27. Storz G., Imlay J. A. 1999; Oxidative stress. Curr Opin Microbiol 2:188–194
    [Google Scholar]
  28. Tantaleán J. C., Araya M. A., Pichuantes S. E., Saavedra C. P., Fuentes D. E., Pérez J. M., Calderón I. L., Vásquez C. C. 2003; The Geobacillus stearothermophilus V iscS gene, encoding cysteine desulfurase, confers resistance to potassium tellurite in Escherichia coli K-12. J Bacteriol 185:5831–5837
    [Google Scholar]
  29. Taylor D. E. 1999; Bacterial tellurite resistance. Trends Microbiol 7:111–115
    [Google Scholar]
  30. Tremaroli V., Fedi F., Zannoni D. 2006; Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Arch Microbiol 187:127–135
    [Google Scholar]
  31. Turner R. J., Weiner J., Taylor D. E. 1999; Tellurite-mediated thiol oxidation in Escherichia coli . Microbiology 145:2549–2557
    [Google Scholar]
  32. Turner R. J., Aharonowitz Y., Weiner J., Taylor D. E. 2001; Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli . Can J Microbiol 47:33–40
    [Google Scholar]
  33. Varghese S., Tang Y., Imlay J. A. 2003; Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J Bacteriol 185:221–230
    [Google Scholar]
  34. Vásquez C. C., Saavedra C. P., Loyola C. A., Araya M. A., Pichuantes S. E. 2001; The product of the cysK gene of Bacillus stearothermophilus V mediates potassium tellurite resistance in Escherichia coli . Curr Microbiol 43:418–423
    [Google Scholar]
  35. Zheng L., White R., Cash V., Jack R., Dean D. 1993; Cysteine desulfurase activity indicates a role for NifS in metallocluster biosynthesis. Proc Natl Acad Sci U S A 90:2754–2758
    [Google Scholar]
  36. Zheng L., White R., Cash V., Dean D. 1994; Mechanism for the sulfurization of l-cysteine catalyzed by the nifS gene product. Biochemistry 33:4714–4720
    [Google Scholar]
  37. Zheng M., Wang X., Templeton L., Smulski D., LaRossa R., Storz G. 2001; DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–4570
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026260-0
Loading
/content/journal/micro/10.1099/mic.0.026260-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error