1887

Abstract

Enterococci are Gram-positive, catalase-negative, non-spore-forming, facultative anaerobic bacteria, which usually inhabit the alimentary tract of humans in addition to being isolated from environmental and animal sources. They are able to survive a range of stresses and hostile environments, including those of extreme temperature (5–65 °C), pH (4.5−10.0) and high NaCl concentration, enabling them to colonize a wide range of niches. Virulence factors of enterococci include the extracellular protein Esp and aggregation substances (Agg), both of which aid in colonization of the host. The nosocomial pathogenicity of enterococci has emerged in recent years, as well as increasing resistance to glycopeptide antibiotics. Understanding the ecology, epidemiology and virulence of species is important for limiting urinary tract infections, hepatobiliary sepsis, endocarditis, surgical wound infection, bacteraemia and neonatal sepsis, and also stemming the further development of antibiotic resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026385-0
2009-06-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1749.html?itemId=/content/journal/micro/10.1099/mic.0.026385-0&mimeType=html&fmt=ahah

References

  1. Alksne L. E., Projan S. J. 2000; Bacterial virulence as a target for antimicrobial chemotherapy. Curr Opin Biotechnol 11:625–636
    [Google Scholar]
  2. Andrup L., Andersen K. 1999; A comparison of the kinetics of plasmid transfer in the conjugation systems encoded by the F plasmid from Escherichia coli and plasmid pCF10 from Entercoccus faecalis . Microbiology 145:2001–2009
    [Google Scholar]
  3. Bearman G. M. L., Wenzel R. P. 2005; Bacteraemias: a leading cause of death. Arch Med Res 36:646–659
    [Google Scholar]
  4. Ben Omar N., Castro A., Lucas R., Abriouel H., Yousif N. M., Franz C. M., Holzapfel W. H., Pérez-Pulido R., Martínez-Cañamero M., Gálvez A. 2004; Functional and safety aspects of enterococci isolated from different Spanish foods. Syst Appl Microbiol 27:118–130
    [Google Scholar]
  5. Billström H., Lund B., Sullivan Å., Nord C. E. 2008; Virulence and antimicrobial resistance in clinical Enterococcus faecium . Int J Antimicrob Agents 32:374–377
    [Google Scholar]
  6. Borgmann S., Niklas D. M., Klare I., Zabel L. T., Buchenau P., Autenrieth I. B., Heeg P. 2004; Two episodes of vancomycin-resistant Enterococcus faecium outbreaks caused by two genetically different clones in a newborn intensive care unit. Int J Hyg Environ Health 207:386–389
    [Google Scholar]
  7. Brown D. F. J., Brown N. M., Cookson B. D., Duckworth G., Farrington M., French G. L., King L., Lewis D., Livermore D. M. other authors 2006; National glycopeptide-resistant enterococcal bacteraemia surveillance Working Group report to the Department of Health – August 2004. J Hosp Infect 62:Suppl. 11–27
    [Google Scholar]
  8. Budzik J. M., Schneewind O. 2006; Pili prove pertinent to enterococcal endocarditis. J Clin Invest 116:2582–2584
    [Google Scholar]
  9. Busani L., Del Grosso M., Paladini C., Graziani C., Pantosti A., Biavasco F., Caprioli A. 2004; Antimicrobial susceptibility of vancomycin-susceptible and -resistant enterococci isolated in Italy from raw meat products, farm animals, and human infections. Int J Food Microbiol 97:17–22
    [Google Scholar]
  10. Campos C. A., Rodriguez O., Calo-Mata P., Prado M., Barros-Velazquez J. 2006; Preliminary characterization of bacteriocins from Lactococcus lactis , Enterococcus faecium and Enterococcus mundtii strains isolated from turbot ( Psetta maxima . Food Res Int 39:356–364
    [Google Scholar]
  11. Clewell D. B., Victoria Francia M., Flannagan S. E., An F. Y. 2002; Enterococcal plasmid transfer: sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. Plasmid 48:193–201
    [Google Scholar]
  12. Dahlen G., Samuelsson W., Molander A. 2000; Identification and antimicrobial susceptibility of enterococci isolated from root canal. Oral Microbiol Immunol 15:309–312
    [Google Scholar]
  13. De Fátima Silva Lopes M., Ribeiro T., Abrantes M., Figueiredo Marques J. J., Tenreiro R., Crespo M. T. B. 2005; Antimicrobial resistance profiles of dairy and clinical isolates and type strains of enterococci. Int J Food Microbiol 103:191–198
    [Google Scholar]
  14. De Fátima Silva Lopes M., Simões A. P., Tenreiro R., Figueiredo Marques J. J., Barreto Crespo M. T. 2006; Activity and expression of a virulence factor, gelatinase, in dairy enterococci. Int J Food Microbiol 112:208–214
    [Google Scholar]
  15. De Kwaadsteniet M., Todorov S. D., Knoetze H., Dicks L. M. T. 2005; Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against Gram-positive and Gram-negative bacteria. Int J Food Microbiol 105:433–444
    [Google Scholar]
  16. Domig K. J., Mayer H. K., Kneifel W. 2003; Methods used for the isolation, enumeration, characterisation and identification of Enterococcus spp. 2. Pheno- and genotypic criteria. Int J Food Microbiol 88:165–188
    [Google Scholar]
  17. Eaton T. J., Gasson M. J. 2002; A variant enterococcal surface protein Espfm in Enterococcus faecium ; distribution among food, commensal, medical, and environmental isolates. FEMS Microbiol Lett 216:269–275
    [Google Scholar]
  18. Folli C., Mangiarotti L., Folloni S., Alfieri B., Gobbo M., Berni R., Rivetti C. 2008; Specificity of the TraA-DNA interaction in the regulation of the pPD1-encoded sex pheromone response in Enterococcus faecalis . J Mol Biol 380:932–945
    [Google Scholar]
  19. Foulquie Moreno M. R., Sarantinopoulos P., Tsakalidou E., De Vuyst L. 2006; The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24
    [Google Scholar]
  20. Franz C. M. A. P., Holzapfel W. H., Stiles M. E. 1999; Enterococci at the crossroads of food safety?. Int J Food Microbiol 47:1–24
    [Google Scholar]
  21. Garcia M. T., Martinez Canamero M., Lucas R., Ben Omar N., Perez Pulido R., Galvez A. 2004; Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. Int J Food Microbiol 90:161–170
    [Google Scholar]
  22. Gardin F., Martuscelli M., Caruso M. C., Galgano F., Crudele M. A., Favati F., Guerzoni M. E., Suzzi G. 2001; Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis . Int J Food Microbiol 64:105–117
    [Google Scholar]
  23. Garneau S., Martin N. I., Vederas J. C. 2002; Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84:577–592
    [Google Scholar]
  24. Gilmore M. 2002 The Enterococci: Pathogenesis, Molecular Biology and Antibiotic Resistance Washington, DC: American Society for Microbiology;
  25. Giraffa G. 2002; Enterococci from foods. FEMS Microbiol Rev 26:163–171
    [Google Scholar]
  26. Gobbetti M., De Angelis M., Di Cagno R., Minervini F., Limitone A. 2007; Cell-cell communication in food related bacteria. Int J Food Microbiol 120:34–45
    [Google Scholar]
  27. Hällgren A., Claesson C., Saeedi B., Monstein H.-J., Hanberger H., Nilsson L. E. 2008; Molecular detection of aggregation substance, enterococcal surface protein, and cytolysin genes and in vitro adhesion to urinary catheters of Enterococcus faecalis and E. faecium of clinical origin. Int J Med MicrobiolNov 28: Epub ahead of print
    [Google Scholar]
  28. Health Protection Agency 2005; Enterococcus spp. and Glycopeptide-Resistant Enterococci (GRE) . Available from
  29. Health Protection Agency 2007; Bacteraemia . Available from
  30. Hechard Y., Sahl H.-G. 2002; Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84:545–557
    [Google Scholar]
  31. Ivanov I. T., Boytcheva S., Mihailova G. 1999; Parallel study of thermal resistance and permeability barrier stability of Enterococcus faecalis as affected by salt composition, growth temperature and pre-incubation temperature. J Therm Biol 24:217–227
    [Google Scholar]
  32. Kacmaz B., Aksoy A. 2005; Antimicrobial resistance of enterococci in Turkey. Int J Antimicrob Agents 25:535–538
    [Google Scholar]
  33. Kayaoglu G., Orstavik D. 2004; Virulence factors of Enterococcus faecalis : relationship to endodontic disease. Crit Rev Oral Biol Med 15:308–320
    [Google Scholar]
  34. Klare I., Konstabel C., Badstubner D., Werner G., Witte W. 2003; Occurrence and spread of antibiotic resistances in Enterococcus faecium . Int J Food Microbiol 88:269–290
    [Google Scholar]
  35. Klein G. 2003; Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int J Food Microbiol 88:123–131
    [Google Scholar]
  36. Klein G., Pack A., Bonaparte C., Reuter G. 1998; Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 41:103–125
    [Google Scholar]
  37. Koch S., Hufnagel M., Theilacker C., Huebner J. 2004; Enterococcal infections: host response, therapeutic, and prophylactic possibilities. Vaccine 22:822–830
    [Google Scholar]
  38. Kuhn I., Iversen A., Burman L. G., Olsson-Liljequist B., Franklin A., Finn M., Aarestrup F., Seyfarth A. M., Blanch A R. other authors 2003; Comparison of enterococcal populations in animals, humans, and the environment – a European study. Int J Food Microbiol 88:133–145
    [Google Scholar]
  39. Latasa C., Solano C., Penadés J. R., Lasa I. 2006; Biofilm-associated proteins. C R Biol 329:849
    [Google Scholar]
  40. Leroy F., Foulquie Moreno M. R., De Vuyst L. 2003; Enterococcus faecium RZS C5, an interesting bacteriocin producer to be used as a co-culture in food fermentation. Int J Food Microbiol 88:235–240
    [Google Scholar]
  41. Love R. M. 2001; Enterococcus faecalis – a mechanism for its role in endodontic failure. Int Endod J 34:399–405
    [Google Scholar]
  42. Lucas R., Grande M. J., Abriouel H., Maqueda M., Ben Omar N., Valdivia E., Martinez-Canamero M., Galvez A. 2006; Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods. Food Chem Toxicol 44:1774–1781
    [Google Scholar]
  43. Mandlik A., Swierczynski A., Das A., Ton-That H. 2008; Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40
    [Google Scholar]
  44. Mannu L., Paba A., Daga E., Comunian R., Zanetti S., Dupre I., Sechi L. A. 2003; Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int J Food Microbiol 88:291–304
    [Google Scholar]
  45. Martinez S., Lopez M., Bernardo A. 2003; Thermal inactivation of Enterococcus faecium: effect of growth temperature and physiological state of microbial cells. Lett Appl Microbiol 37:475–481
    [Google Scholar]
  46. Metan G., Zarakolu P., Unal S. 2005; Rapid detection of antibacterial resistance in emerging Gram-positive cocci. J Hosp Infect 61:93–99
    [Google Scholar]
  47. Mohamed J. A., Huang D. B. 2007; Biofilm formation by enterococci. J Med Microbiol 56:1581–1588
    [Google Scholar]
  48. Mutnick A. H., Biedenbach D. J., Jones R. N. 2003; Geographic variations and trends in antimicrobial resistance among Enterococcus faecalis and Enterococcus faecium in the SENTRY Antimicrobial Surveillance Program (1997–2000. Diagn Microbiol Infect Dis 46:63–68
    [Google Scholar]
  49. Nakajo K., Iwami Y., Komori R., Ishikawa S., Ueno T., Suzuki Y., Takahashi N. 2005; The resistance to acidic and alkaline environments of endodontic pathogen Enterococcus faecalis . Int Congr Ser 1284:191–192
    [Google Scholar]
  50. Nallapareddy S. R., Singh K. V., Silanpaa J., Garsin D. A., Hook M., Erlandsen S. L., Murray B. A. 2006; Endocarditis and biofilm-associated pili of Enterococcus faecalis . J Clin Invest 116:2799–2807
    [Google Scholar]
  51. National Nosocomial Infections Surveillance 2004; System report, data summary from January 1992 through June 2004, issued October 2004. A report from the NNIS System. Am J Infect Control 32:470–485
    [Google Scholar]
  52. Peciuliene V., Reynaud A. H., Balciuniene L., Haapasalo M. 2001; Isolation of yeasts and enteric bacteria in root-filled teeth with chronic apical periodontitis. Int Endod J 34:429–434
    [Google Scholar]
  53. Peters J., Mac K., Wichmann-Schauer H., Klein G., Ellerbroek L. 2003; Species distribution and antibiotic resistance patterns of enterococci isolated from food of animal origin in Germany. Int J Food Microbiol 88:311–314
    [Google Scholar]
  54. Podbielski A., Kreikemeyer B. 2004; Cell density-dependent regulation: basic principles and effects on the virulence of Gram-positive cocci. Int J Infect Dis 8:81–95
    [Google Scholar]
  55. Poh C. H., Oh H. M. L., Tan A. L. 2006; Epidemiology and clinical outcome of enterococcal bacteraemia in an acute care hospital. J Infect 52:383–386
    [Google Scholar]
  56. Saeedi B., Hällgren A., Jonasson J., Nilsson L., Hanberger H., Isaksson B. 2002; Modified pulsed-field gel electrophoresis protocol for typing of enterococci. APMIS 110:869–874
    [Google Scholar]
  57. Semedo T., Santos M. A., Lopes M. F., Marques J. J. F., Crespo M. T., Tenreiro R. 2003; Virulence factors in food, clinical and reference enterococci: a common trait in the genus?. Syst Appl Microbiol 26:13–22
    [Google Scholar]
  58. Shankar V., Baghdayan A. S., Huycke M. M., Lindahl G., Gilmore M. S. 1999; Infection-derived Enterococcus faecalis strains are enriched in esp , a gene encoding a novel surface protein. Infect Immun 67:193–200
    [Google Scholar]
  59. Shanks O. C., Santo Domingo J. W., Graham J. E. 2006; Use of competitive DNA hybridization to identify differences in the genomes of bacteria. J Microbiol Methods 66:321–330
    [Google Scholar]
  60. Sifri C. D., Mylonakis E., Singh K. V., Qin X., Garsin D. A., Myurray B. E., Ausubel F. M., Calderwood S. B. 2002; Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice. Infect Immun 70:5647–5650
    [Google Scholar]
  61. Singh K. V., Nallapareddy S. R., Murray B. A. 2007; Importance of the ebp (endocarditis-and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J Infect Dis 195:1671–1677
    [Google Scholar]
  62. Stephenson K., Hoch J. A. 2002; Virulence- and antibiotic resistance-associated two-component signal transduction systems of Gram-positive pathogenic bacteria as targets for antimicrobial therapy. Pharmacol Ther 93:293–305
    [Google Scholar]
  63. Stiles M. E., Holzapfel W. H. 1997; Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29
    [Google Scholar]
  64. Van den Berghe E., De Winter T., De Vuyst L. 2006; Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. Int J Food Microbiol 107:159–170
    [Google Scholar]
  65. Vankerckhoven V., Van Autgaerden T., Vael C., Lammens C., Chapelle S., Rossi R., Jabes D., Goossens H. 2004; Development of a multiplex PCR for the detection of asa1 , gelE , cylA , esp and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium . J Clin Microbiol 42:4473–4479
    [Google Scholar]
  66. Weaver K. E., Kwong S. M., Firth N., Francia M. V. 2009; The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids. Plasmid 61:94–109
    [Google Scholar]
  67. Williams J. J., Hergenrother P. J. 2008; Exposing plasmids as the Achilles' heel of drug-resistant bacteria. Curr Opin Chem Biol 12:389–399
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026385-0
Loading
/content/journal/micro/10.1099/mic.0.026385-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error