1887

Abstract

causes urinary tract infections (UTIs) in individuals requiring long-term indwelling catheterization. The pathogenesis of this uropathogen is mediated by a number of virulence factors and the formation of crystalline biofilms. In addition, micro-organisms have evolved complex systems for the acquisition of nutrients, including the phosphate-specific transport system, which has been shown to be important in biofilm formation and pathogenesis. A functional Pst system is important during UTIs caused by HI4320, since transposon mutants in the PstS periplasmic binding protein and the PstA permease protein were attenuated in the CBA mouse model of UTI. These mutants displayed a defect in biofilm formation when grown in human urine. This study focuses on a comparison of the proteomes during biofilm and planktonic growth in phosphate-rich medium and human urine, and microscopic investigations of biofilms formed by the mutants. Our data suggest that (i) the Δ mutants, and particularly the Δ mutant, are defective in biofilm formation, and (ii) the proteomes of these mutants differ significantly from that of the wild-type. Therefore, since the Pst system of HI4320 negatively regulates biofilm formation, this system is important for the pathogenesis of these organisms during complicated UTIs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026500-0
2009-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1523.html?itemId=/content/journal/micro/10.1099/mic.0.026500-0&mimeType=html&fmt=ahah

References

  1. Adams J. L., McLean R. J. 1999; Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65:4285–4287
    [Google Scholar]
  2. Barnhart M. M., Lynem J., Chapman M. R. 2006; GlcNAc-6P levels modulate the expression of Curli fibers by Escherichia coli . J Bacteriol 188:5212–5219
    [Google Scholar]
  3. Belas R. 1996; Proteus mirabilis swarmer cell differentiation and urinary tract infection. In Urinary Tract Infections: Molecular Pathogenesis and Clinical Management pp 271–298 Edited by Mobley H. L., Warren J. W. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Benning C., Huang Z. H., Gage D. A. 1995; Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 317:103–111
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  6. Brady R. A., Leid J. G., Camper A. K., Costerton J. W., Shirtliff M. E. 2006; Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect Immun 74:3415–3426
    [Google Scholar]
  7. Breazeale S. D., Ribeiro A. A., McClerren A. L., Raetz C. R. 2005; A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-l-arabinose. Identification and function of UDP-4-deoxy-4-formamido-l-arabinose. J Biol Chem 280:14154–14167
    [Google Scholar]
  8. Buckles E. L., Wang X., Lockatell C. V., Johnson D. E., Donnenberg M. S. 2006; PhoU enhances the ability of extraintestinal pathogenic Escherichia coli strain CFT073 to colonize the murine urinary tract. Microbiology 152:153–160
    [Google Scholar]
  9. Burall L. S., Harro J. M., Li X., Lockatell C. V., Himpsl S. D., Hebel J. R., Johnson D. E., Mobley H. L. 2004; Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 72:2922–2938
    [Google Scholar]
  10. Carter E. L., Jager L., Gardner L., Hall C. C., Willis S., Green J. M. 2007; Escherichia coli abg genes enable uptake and cleavage of the folate catabolite p -aminobenzoyl-glutamate. J Bacteriol 189:3329–3334
    [Google Scholar]
  11. Castelli P., Caronno R., Ferrarese S., Mantovani V., Piffaretti G., Tozzi M., Lomazzi C., Rivolta N., Sala A. 2006; New trends in prosthesis infection in cardiovascular surgery. Surg Infect (Larchmt) 7:(suppl. 2)S45–S47
    [Google Scholar]
  12. Chippendale G. R., Warren J. W., Trifillis A. L., Mobley H. L. 1994; Internalization of Proteus mirabilis by human renal epithelial cells. Infect Immun 62:3115–3121
    [Google Scholar]
  13. Clauser K. R., Baker P., Burlingame A. L. 1999; Role of accurate mass measurement (± 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem 71:2871–2882
    [Google Scholar]
  14. Corona-Izquierdo F. P., Membrillo-Hernandez J. 2002; A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiol Lett 211:105–110
    [Google Scholar]
  15. Daigle F., Fairbrother J. M., Harel J. 1995; Identification of a mutation in the pst - phoU operon that reduces pathogenicity of an Escherichia coli strain causing septicemia in pigs. Infect Immun 63:4924–4927
    [Google Scholar]
  16. Danhorn T., Hentzer M., Givskov M., Parsek M. R., Fuqua C. 2004; Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR–PhoB regulatory system. J Bacteriol 186:4492–4501
    [Google Scholar]
  17. Delcher A. L., Harmon D., Kasif S., White O., Salzberg S. L. 1999; Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641
    [Google Scholar]
  18. Gardy J. L., Spencer C., Wang K., Ester M., Tusnády G. E., Simon I., Hua S., deFays K., Lambert C. other authors 2003; psort-B: improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res 31:3613–3617
    [Google Scholar]
  19. Gharahdaghi F., Weinberg C. R., Meagher D. A., Imai B. S., Mische S. M. 1999; Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601–605
    [Google Scholar]
  20. Gorg A., Obermaier C., Boguth G., Harder A., Scheibe B., Wildgruber R., Weiss W. 2000; The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053
    [Google Scholar]
  21. Han T. K., Zhu Z., Dao M. L. 2004; Identification, molecular cloning, and sequence analysis of a deoxyribose aldolase in Streptococcus mutans GS-5. Curr Microbiol 48:230–236
    [Google Scholar]
  22. Hengge-Aronis R. 2002; Signal transduction and regulatory mechanisms involved in control of the σ S (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395
    [Google Scholar]
  23. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersboll B. K., Molin S. 2000; Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407
    [Google Scholar]
  24. Heydorn A., Ersboll B., Kato J., Hentzer M., Parsek M. R., Tolker-Nielsen T., Givskov M., Molin S. 2002; Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68:2008–2017
    [Google Scholar]
  25. Jacobsen S. M., Lane M. C., Harro J. M., Shirtliff M. E., Mobley H. L. 2008; The high-affinity phosphate transporter Pst is a virulence factor for Proteus mirabilis during complicated urinary tract infection. FEMS Immunol Med Microbiol 52:180–193
    [Google Scholar]
  26. Jones G. L., Muller C. T., O'Reilly M., Stickler D. J. 2006; Effect of triclosan on the development of bacterial biofilms by urinary tract pathogens on urinary catheters. J Antimicrob Chemother 57:266–272
    [Google Scholar]
  27. Kikuchi T., Mizunoe Y., Takade A., Naito S., Yoshida S. 2005; Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol 49:875–884
    [Google Scholar]
  28. Kovacikova G., Lin W., Skorupski K. 2005; Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae . Mol Microbiol 57:420–433
    [Google Scholar]
  29. Lamarche M. G., Dozois C. M., Daigle F., Caza M., Curtiss R. III, Dubreuil J. D., Harel J. 2005; Inactivation of the pst system reduces the virulence of an avian pathogenic Escherichia coli O78 strain. Infect Immun 73:4138–4145
    [Google Scholar]
  30. Lewis K. 2001; Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007
    [Google Scholar]
  31. Lucas R. L., Lostroh C. P., DiRusso C. C., Spector M. P., Wanner B. L., Lee C. A. 2000; Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar Typhimurium. J Bacteriol 182:1872–1882
    [Google Scholar]
  32. Mathew J. A., Tan Y. P., Srinivasa Rao P. S., Lim T. M., Leung K. Y. 2001; Edwardsiella tarda mutants defective in siderophore production, motility, serum resistance and catalase activity. Microbiology 147:449–457
    [Google Scholar]
  33. Mendrygal K. E., Gonzalez J. E. 2000; Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti . J Bacteriol 182:599–606
    [Google Scholar]
  34. Minnikin D. E., Abdolrahimzadeh H., Baddiley J. 1974; Replacement of acidic phosphates by acidic glycolipids in Pseudomonas diminuta . Nature 249:268–269
    [Google Scholar]
  35. Mobley H. L. 1996; Virulence of Proteus mirabilis .. In Urinary Tract Infections: Molecular Pathogenesis and Clinical Management pp 245–269 Edited by Mobley H. L., Warren J. W. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Mobley H. L., Warren J. W. 1987; Urease-positive bacteriuria and obstruction of long-term urinary catheters. J Clin Microbiol 25:2216–2217
    [Google Scholar]
  37. Mobley H. L., Island M. D., Massad G. 1994; Virulence determinants of uropathogenic Escherichia coli and Proteus mirabilis . Kidney Int Suppl 47:S129–S136
    [Google Scholar]
  38. Moller S., Pedersen A. R., Poulsen L. K., Arvin E., Molin S. 1996; Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl Environ Microbiol 62:4632–4640
    [Google Scholar]
  39. Monds R. D., Silby M. W., Mahanty H. K. 2001; Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147–2. Mol Microbiol 42:415–426
    [Google Scholar]
  40. Monds R. D., Newell P. D., Gross R. H., O'Toole G. A. 2007; Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0–1 biofilm formation by controlling secretion of the adhesin LapA. Mol Microbiol 63:656–679
    [Google Scholar]
  41. Morris N. S., Stickler D. J., McLean R. J. 1999; The development of bacterial biofilms on indwelling urethral catheters. World J Urol 17:345–350
    [Google Scholar]
  42. Musher D. M., Griffith D. P., Yawn D., Rossen R. D. 1975; Role of urease in pyelonephritis resulting from urinary tract infection with Proteus . J Infect Dis 131:177–181
    [Google Scholar]
  43. Oelschlaeger T. A., Tall B. D. 1996; Uptake pathways of clinical isolates of Proteus mirabilis into human epithelial cell lines. Microb Pathog 21:1–16
    [Google Scholar]
  44. O'Farrell P. H. 1975; High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021
    [Google Scholar]
  45. Orihuela C. J., Mills J., Robb C. W., Wilson C. J., Watson D. A., Niesel D. W. 2001; Streptococcus pneumoniae PstS production is phosphate responsive and enhanced during growth in the murine peritoneal cavity. Infect Immun 69:7565–7571
    [Google Scholar]
  46. O'Toole G. A., Kolter R. 1998; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461
    [Google Scholar]
  47. O'Toole G. A., Pratt L. A., Watnick P. I., Newman D. K., Weaver V. B., Kolter R. 1999; Genetic approaches to study of biofilms. Methods Enzymol 310:91–109
    [Google Scholar]
  48. Peerbooms P. G., Verweij A. M., MacLaren D. M. 1984; Vero cell invasiveness of Proteus mirabilis . Infect Immun 43:1068–1071
    [Google Scholar]
  49. Peirs P., Lefèvre P., Boarbi S., Wang X. M., Denis O., Braibant M., Pethe K., Locht C., Huygen K., Content J. 2005; Mycobacterium tuberculosis with disruption in genes encoding the phosphate binding proteins PstS1 and PstS2 is deficient in phosphate uptake and demonstrates reduced in vivo virulence. Infect Immun 73:1898–1902
    [Google Scholar]
  50. Pratt L. A., Kolter R. 1998; Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293
    [Google Scholar]
  51. Rao N. N., Torriani A. 1990; Molecular aspects of phosphate transport in Escherichia coli . Mol Microbiol 4:1083–1090
    [Google Scholar]
  52. Rosenberg H., Gerdes R. G., Chegwidden K. 1977; Two systems for the uptake of phosphate in Escherichia coli . J Bacteriol 131:505–511
    [Google Scholar]
  53. Ruberg S., Puhler A., Becker A. 1999; Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phosphate-dependent regulator PhoB and the proteins ExpG and MucR. Microbiology 145:603–611
    [Google Scholar]
  54. Ruiz N., Silhavy T. J. 2003; Constitutive activation of the Escherichia coli Pho regulon upregulates rpoS translation in an Hfq-dependent fashion. J Bacteriol 185:5984–5992
    [Google Scholar]
  55. Runyen-Janecky L. J., Boyle A. M., Kizzee A., Liefer L., Payne S. M. 2005; Role of the Pst system in plaque formation by the intracellular pathogen Shigella flexneri . Infect Immun 73:1404–1410
    [Google Scholar]
  56. Sauer K., Camper A. K. 2001; Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183:6579–6589
    [Google Scholar]
  57. Sinai A. P., Bavoil P. M. 1993; Hyper-invasive mutants define a novel Pho-regulated invasion pathway in Escherichia coli . Mol Microbiol 10:1125–1137
    [Google Scholar]
  58. Sohanpal B. K., El-Labany S., Lahooti M., Plumbridge J. A., Blomfield I. C. 2004; Integrated regulatory responses of fimB to N -acetylneuraminic (sialic) acid and GlcNAc in Escherichia coli K-12. Proc Natl Acad Sci U S A 101:16322–16327
    [Google Scholar]
  59. Soldo B., Lazarevic V., Pagni M., Karamata D. 1999; Teichuronic acid operon of Bacillus subtilis 168. Mol Microbiol 31:795–805
    [Google Scholar]
  60. Soualhine H., Brochu V., Menard F., Papadopoulou B., Weiss K., Bergeron M. G., Legare D., Drummelsmith J., Ouellette M. 2005; A proteomic analysis of penicillin resistance in Streptococcus pneumoniae reveals a novel role for PstS, a subunit of the phosphate ABC transporter. Mol Microbiol 58:1430–1440
    [Google Scholar]
  61. Stickler D. J., King J. B., Winters C., Morris S. L. 1993; Blockage of urethral catheters by bacterial biofilms. J Infect 27:133–135
    [Google Scholar]
  62. Stoodley P., Sauer K., Davies D. G., Costerton J. W. 2002; Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209
    [Google Scholar]
  63. Torriani-Gorini A. 1994; Introduction: the pho regulon of Escherichia coli . In Phosphate in Microbiology: Cellular and Molecular Biology pp 1–4 Edited by Silver S., Torriani-Gorini A., Yagil E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  64. Walker K. E., Moghaddame-Jafari S., Lockatell C. V., Johnson D., Belas R. 1999; ZapA, the IgA-degrading metalloprotease of Proteus mirabilis , is a virulence factor expressed specifically in swarmer cells. Mol Microbiol 32:825–836
    [Google Scholar]
  65. Warren J. W., Tenney J. H., Hoopes J. M., Muncie H. L., Anthony W. C. 1982; A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 146:719–723
    [Google Scholar]
  66. Xu K. D., Franklin M. J., Park C. H., McFeters G. A., Stewart P. S. 2001; Gene expression and protein levels of the stationary phase sigma factor, RpoS, in continuously-fed Pseudomonas aeruginosa biofilms. FEMS Microbiol Lett 199:67–71
    [Google Scholar]
  67. Yun J. I., Cho K. M., Kim J. K., Lee S. O., Cho K., Lee K. 2007; Mutation of rpoS enhances Pseudomonas sp. KL28 growth at higher concentrations of m -cresol and changes its surface-related phenotypes. FEMS Microbiol Lett 269:97–103
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026500-0
Loading
/content/journal/micro/10.1099/mic.0.026500-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error