1887

Abstract

produces two surface-associated lipoproteins that share homology with two distinct families of peptidyl-prolyl isomerases (PPIases), the streptococcal lipoprotein rotamase A (SlrA) and the putative proteinase maturation protein A (PpmA). Previously, we have demonstrated that SlrA has PPIase activity, and that the enzyme plays a role in pneumococcal virulence. Here, we investigated the contribution of PpmA to pneumococcal pathogenesis. Pneumococcal mutants of D39 and TIGR4 lacking the gene encoding PpmA were less capable of persisting in the nasopharynx of mice, demonstrating the contribution of PpmA to pneumococcal colonization. This observation was partially confirmed , as the pneumococcal mutants NCTC10319Δ and TIGR4ΔΔ, but not D39ΔΔ, were impaired in adherence to Detroit 562 pharyngeal cells. This suggests that the contribution of PpmA to pneumococcal colonization is not solely the result of its role in adherence to epithelial cells. Deficiency in PpmA did not result in reduced binding to various extracellular matrix and serum proteins. Similar to SlrA, we observed that PpmA was involved in immune evasion. Uptake of PpmA-deficient D39Δ and NCTC10319 by human polymorphonuclear leukocytes was significantly enhanced compared to the isogenic wild-types. In addition, ingestion of D39Δ, but not that of either NCTC10319Δ or TIGR4Δ, by murine macrophage cell line J774 was also enhanced, whereas intracellular killing remained unaffected. We conclude that PpmA contributes to the early stages of infection, i.e. colonization. The contribution of PpmA to virulence can be explained by its strain-specific role in adherence to epithelial cells and contribution to the evasion of phagocytosis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026765-0
2009-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2401.html?itemId=/content/journal/micro/10.1099/mic.0.026765-0&mimeType=html&fmt=ahah

References

  1. Alexander J. E., Lock R. A., Peeters C. C., Poolman J. T., Andrew P. W., Mitchell T. J., Hansman D., Paton J. C. 1994; Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae . Infect Immun 62:5683–5688
    [Google Scholar]
  2. Barocchi M. A., Ries J., Zogaj X., Hemsley C., Albiger B., Kanth A., Dahlberg S., Fernebro J., Moschioni M. other authors 2006; A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci U S A 103:2857–2862
    [Google Scholar]
  3. Bergmann S., Rohde M., Chhatwal G. S., Hammerschmidt S. 2001; alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273–1287
    [Google Scholar]
  4. Bergmann S., Wild D., Diekmann O., Frank R., Bracht D., Chhatwal G. S., Hammerschmidt S. 2003; Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae . Mol Microbiol 49:411–423
    [Google Scholar]
  5. Bergmann S., Rohde M., Hammerschmidt S. 2004; Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect Immun 72:2416–2419
    [Google Scholar]
  6. Blue C. E., Mitchell T. J. 2003; Contribution of a response regulator to the virulence of Streptococcus pneumoniae is strain dependent. Infect Immun 71:4405–4413
    [Google Scholar]
  7. Bogaert D., de Groot R., Hermans P. W. 2004; Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4:144–154
    [Google Scholar]
  8. Bootsma H. J., Egmont-Petersen M., Hermans P. W. 2007; Analysis of the in vitro transcriptional response of human pharyngeal epithelial cells to adherent Streptococcus pneumoniae: evidence for a distinct response to encapsulated strains. Infect Immun 75:5489–5499
    [Google Scholar]
  9. Briles D. E., Novak L., Hotomi M., van Ginkel F. W., King J. 2005; Nasal colonization with Streptococcus pneumoniae includes subpopulations of surface and invasive pneumococci. Infect Immun 73:6945–6951
    [Google Scholar]
  10. Brock S. C., McGraw P. A., Wright P. F., Crowe J. E. Jr 2002; The human polymeric immunoglobulin receptor facilitates invasion of epithelial cells by Streptococcus pneumoniae in a strain-specific and cell type-specific manner. Infect Immun 70:5091–5095
    [Google Scholar]
  11. Burghout P., Bootsma H. J., Kloosterman T. G., Bijlsma J. J., de Jongh C. E., Kuipers O. P., Hermans P. W. 2007; Search for genes essential for pneumococcal transformation: the RadA DNA repair protein plays a role in genomic recombination of donor DNA. J Bacteriol 189:6540–6550
    [Google Scholar]
  12. Cianciotto N. P., Fields B. S. 1992; Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci U S A 89:5188–5191
    [Google Scholar]
  13. Cianciotto N. P., Eisenstein B. I., Mody C. H., Toews G. B., Engleberg N. C. 1989; A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection. Infect Immun 57:1255–1262
    [Google Scholar]
  14. Cundell D. R., Gerard N. P., Gerard C., Idanpaan-Heikkila I., Tuomanen E. I. 1995; Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:435–438
    [Google Scholar]
  15. Dartigalongue C., Raina S. 1998; A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli . EMBO J 17:3968–3980
    [Google Scholar]
  16. Dintilhac A., Alloing G., Granadel C., Claverys J. P. 1997; Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25:727–739
    [Google Scholar]
  17. Dolinski K., Muir S., Cardenas M., Heitman J. 1997; All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 94:13093–13098
    [Google Scholar]
  18. Drouault S., Anba J., Bonneau S., Bolotin A., Ehrlich S. D., Renault P. 2002; The peptidyl-prolyl isomerase motif is lacking in PmpA, the PrsA-like protein involved in the secretion machinery of Lactococcus lactis . Appl Environ Microbiol 68:3932–3942
    [Google Scholar]
  19. Elm C., Braathen R., Bergmann S., Frank R., Vaerman J. P., Kaetzel C. S., Chhatwal G. S., Johansen F. E., Hammerschmidt S. 2004; Ectodomains 3 and 4 of human polymeric Immunoglobulin receptor (hpIgR) mediate invasion of Streptococcus pneumoniae into the epithelium. J Biol Chem 279:6296–6304
    [Google Scholar]
  20. Hakenbeck R., Balmelle N., Weber B., Gardès C., Keck W., de Saizieu A. 2001; Mosaic genes and mosaic chromosomes: intra- and interspecies genomic variation of Streptococcus pneumoniae . Infect Immun 69:2477–2486
    [Google Scholar]
  21. Hammerschmidt S. 2006; Adherence molecules of pathogenic pneumococci. Curr Opin Microbiol 9:12–20
    [Google Scholar]
  22. Hammerschmidt S., Bethe G., Remane P. H., Chhatwal G. S. 1999; Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae . Infect Immun 67:1683–1687
    [Google Scholar]
  23. Hammerschmidt S., Tillig M. P., Wolff S., Vaerman J. P., Chhatwal G. S. 2000; Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol Microbiol 36:726–736
    [Google Scholar]
  24. Hammerschmidt S., Wolff S., Hocke A., Rosseau S., Muller E., Rohde M. 2005; Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 73:4653–4667
    [Google Scholar]
  25. Hava D. L., Camilli A. 2002; Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45:1389–1406
    [Google Scholar]
  26. Hendriksen W. T., Silva N., Bootsma H. J., Blue C. E., Paterson G. K., Kerr A. R., de Jong A., Kuipers O. P., Hermans P. W., Mitchell T. J. 2007; Regulation of gene expression in Streptococcus pneumoniae by response regulator 09 is strain dependent. J Bacteriol 189:1382–1389
    [Google Scholar]
  27. Hendriksen W. T., Bootsma H. J., Estevao S., Hoogenboezem T., de Jong A., de Groot R., Kuipers O. P., Hermans P. W. 2008; CodY of Streptococcus pneumoniae: link between nutritional gene regulation and colonization. J Bacteriol 190:590–601
    [Google Scholar]
  28. Hermans P. W., Adrian P. V., Albert C., Estevao S., Hoogenboezem T., Luijendijk I. H., Kamphausen T., Hammerschmidt S. 2006; The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonization. J Biol Chem 281:968–976
    [Google Scholar]
  29. Holmes A. R., McNab R., Millsap K. W., Rohde M., Hammerschmidt S., Mawdsley J. L., Jenkinson H. F. 2001; The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol Microbiol 41:1395–1408
    [Google Scholar]
  30. Jansen W. T., Gootjes J., Zelle M., Madore D. V., Verhoef J., Snippe H., Verheul A. F. 1998; Use of highly encapsulated Streptococcus pneumoniae strains in a flow-cytometric assay for assessment of the phagocytic capacity of serotype-specific antibodies. Clin Diagn Lab Immunol 5:703–710
    [Google Scholar]
  31. Kerr A. R., Adrian P. V., Estevão S., de Groot R., Alloing G., Claverys J. P., Mitchell T. J., Hermans P. W. 2004; The Ami-AliA/AliB permease of Streptococcus pneumoniae is involved in nasopharyngeal colonization but not in invasive disease. Infect Immun 72:3902–3906
    [Google Scholar]
  32. Kim J. O., Weiser J. N. 1998; Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae . J Infect Dis 177:368–377
    [Google Scholar]
  33. Lanie J. A., Ng W. L., Kazmierczak K. M., Andrzejewski T. M., Davidsen T. M., Wayne K. J., Tettelin H., Glass J. I., Winkler M. E. 2007; Genome sequence of Avery's virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol 189:38–51
    [Google Scholar]
  34. Lau G. W., Haataja S., Lonetto M., Kensit S. E., Marra A., Bryant A. P., McDevitt D., Morrison D. A., Holden D. W. 2001; A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol Microbiol 40:555–571
    [Google Scholar]
  35. Lazar S. W., Kolter R. 1996; SurA assists the folding of Escherichia coli outer membrane proteins. J Bacteriol 178:1770–1773
    [Google Scholar]
  36. Lu K. P., Hanes S. D., Hunter T. 1996; A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380:544–547
    [Google Scholar]
  37. Lyon W. R., Gibson C. M., Caparon M. G. 1998; A role for trigger factor and an Rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes . EMBO J 17:6263–6275
    [Google Scholar]
  38. Magee A. D., Yother J. 2001; Requirement for capsule in colonization by Streptococcus pneumoniae . Infect Immun 69:3755–3761
    [Google Scholar]
  39. Nelson A. L., Roche A. M., Gould J. M., Chim K., Ratner A. J., Weiser J. N. 2007; Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect Immun 75:83–90
    [Google Scholar]
  40. Overweg K., Kerr A., Sluijter M., Jackson M. H., Mitchell T. J., de Jong A. P., de Groot R., Hermans P. W. 2000a; The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun 68:4180–4188
    [Google Scholar]
  41. Overweg K., Pericone C. D., Verhoef G. G., Weiser J. N., Meiring H. D., de Jong A. P., de Groot R., Hermans P. W. 2000b; Differential protein expression in phenotypic variants of Streptococcus pneumoniae . Infect Immun 68:4604–4610
    [Google Scholar]
  42. Rahfeld J. U., Rucknagel K. P., Schelbert B., Ludwig B., Hacker J., Mann K., Fischer G. 1994; Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases. Amino acid sequence and recombinant production of parvulin. FEBS Lett 352:180–184
    [Google Scholar]
  43. Romero-Steiner S., Pilishvili T., Sampson J. S., Johnson S. E., Stinson A., Carlone G. M., Ades E. W. 2003; Inhibition of pneumococcal adherence to human nasopharyngeal epithelial cells by anti-PsaA antibodies. Clin Diagn Lab Immunol 10:246–251
    [Google Scholar]
  44. Rosenow C., Ryan P., Weiser J. N., Johnson S., Fontan P., Ortqvist A., Masure H. R. 1997; Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae . Mol Microbiol 25:819–829
    [Google Scholar]
  45. Rouviere P. E., Gross C. A. 1996; SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev 10:3170–3182
    [Google Scholar]
  46. Selinger D. S., Reed W. P. 1979; Pneumococcal adherence to human epithelial cells. Infect Immun 23:545–548
    [Google Scholar]
  47. Shaper M., Hollingshead S. K., Benjamin W. H. Jr, Briles D. E. 2004; PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin. Infect Immun 72:5031–5040
    [Google Scholar]
  48. Swords W. E., Buscher B. A., Ver Steeg I. K., Preston A., Nichols W. A., Weiser J. N., Gibson B. W., Apicella M. A. 2000; Non-typeable Haemophilus influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor. Mol Microbiol 37:13–27
    [Google Scholar]
  49. Talbot U. M., Paton A. W., Paton J. C. 1996; Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect Immun 64:3772–3777
    [Google Scholar]
  50. Tettelin H., Nelson K. E., Paulsen I. T., Eisen J. A., Read T. D., Peterson S., Heidelberg J., DeBoy R. T., Haft D. H. other authors 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science 293:498–506
    [Google Scholar]
  51. van der Flier M., Chhun N., Wizemann T. M., Min J., McCarthy J. B., Tuomanen E. I. 1995; Adherence of Streptococcus pneumoniae to immobilized fibronectin. Infect Immun 63:4317–4322
    [Google Scholar]
  52. Vitikainen M., Lappalainen I., Seppala R., Antelmann H., Boer H., Taira S., Savilahti H., Hecker M., Vihinen M. other authors 2004; Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking N- and C-terminal domains in protein folding and secretion in Bacillus subtilis . J Biol Chem 279:19302–19314
    [Google Scholar]
  53. Weiser J. N., Austrian R., Sreenivasan P. K., Masure H. R. 1994; Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect Immun 62:2582–2589
    [Google Scholar]
  54. Zhang J. R., Mostov K. E., Lamm M. E., Nanno M., Shimida S., Ohwaki M., Tuomanen E. 2000; The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102:827–837
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026765-0
Loading
/content/journal/micro/10.1099/mic.0.026765-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error