1887

Abstract

We report that larvae of the wax moth () are susceptible to infection with the human enteropathogen at 37 °C. Confocal microscopy demonstrated that in the initial stages of infection the bacteria were taken up into haemocytes. To evaluate the utility of this model for screening mutants we constructed and tested a superoxide dismutase C () mutant. This mutant showed increased susceptibility to superoxide, a key mechanism of killing in insect haemocytes and mammalian phagocytes. It showed reduced virulence in the murine yersiniosis infection model and in contrast to the wild-type strain IP32953 was unable to kill . The complemented mutant regained all phenotypic properties associated with SodC, confirming the important role of this metalloenzyme in two infection models.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026823-0
2009-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1516.html?itemId=/content/journal/micro/10.1099/mic.0.026823-0&mimeType=html&fmt=ahah

References

  1. Aperis G., Fuchs B. B., Anderson C. A., Warner J. E., Calderwood S. B., Mylonakis E. 2007; Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes Infect 9:729–734
    [Google Scholar]
  2. Battistoni A., Pacello F., Folcarelli S., Ajello M., Donnarumma G., Greco R., Ammendolia M. G., Touati D., Rotilio G., Valenti P. 2000; Increased expression of periplasmic Cu,Zn superoxide dismutase enhances survival of Escherichia coli invasive strains within nonphagocytic cells. Infect Immun 68:30–37
    [Google Scholar]
  3. Bergin D., Reeves E. P., Renwick J., Wientjes F. B., Kavanagh K. 2005; Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73:4161–4170
    [Google Scholar]
  4. Bhaduri S., Turner-Jones C., Lachica R. V. 1991; Convenient agarose medium for simultaneous determination of the low-calcium response and Congo red binding by virulent strains of Yersinia enterocolitica . J Clin Microbiol 29:2341–2344
    [Google Scholar]
  5. Chain P. S., Carniel E., Larimer F. W., Lamerdin J., Stoutland P. O., Regala W. M., Georgescu A. M., Vergez L. M., Land M. L. other authors 2004; Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis . Proc Natl Acad Sci U S A 101:13826–13831
    [Google Scholar]
  6. Churchward G., Belin D., Nagamine Y. 1984; A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene 31:165–171
    [Google Scholar]
  7. Darby C. 2008; Uniquely insidious: Yersinia pestis biofilms. Trends Microbiol 16:158–164
    [Google Scholar]
  8. Darby C., Hsu J. W., Ghori N., Falkow S. 2002; Caenorhabditis elegans – plague bacteria biofilm blocks food intake. Nature 417:243–244
    [Google Scholar]
  9. De Groote M. A., Ochsner U. A., Shiloh M. U., Nathan C., McCord J. M., Dinauer M. C., Libby S. J., Vazquez-Torres A., Xu Y., Fang F. C. 1997; Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci U S A 94:13997–14001
    [Google Scholar]
  10. Derbise A., Lesic B., Dacheux D., Ghigo J. M., Carniel E. 2003; A rapid and simple method for inactivating chromosomal genes in Yersinia . FEMS Immunol Med Microbiol 38:113–116
    [Google Scholar]
  11. Djaldetti M., Salman H., Bergman M., Djaldetti R., Bessler H. 2002; Phagocytosis – the mighty weapon of the silent warriors. Microsc Res Tech 57:421–431
    [Google Scholar]
  12. Freter R., Allweiss B., O'Brien P. C., Halstead S. A., Macsai M. S. 1981; Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vitro studies. Infect Immun 34:241–249
    [Google Scholar]
  13. Garcia-Lara J., Needham A. J., Foster S. J. 2005; Invertebrates as animal models for Staphylococcus aureus pathogenesis: a window into host–pathogen interaction. FEMS Immunol Med Microbiol 43:311–323
    [Google Scholar]
  14. Gee J. M., Valderas M. W., Kovach M. E., Grippe V. K., Robertson G. T., Ng W. L., Richardson J. M., Winkler M. E., Roop R. M. II 2005; The Brucella abortus Cu,Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect Immun 73:2873–2880
    [Google Scholar]
  15. Hassan H. M., Schrum L. W. 1994; Roles of manganese and iron in the regulation of the biosynthesis of manganese-superoxide dismutase in Escherichia coli . FEMS Microbiol Rev 14:315–323
    [Google Scholar]
  16. Jander G., Rahme L. G., Ausubel F. M. 2000; Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182:3843–3845
    [Google Scholar]
  17. Joshua G. W. P., Karlyshev A. V., Smith M. P., Isherwood K. E., Titball R. W., Wren B. W. 2003; A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology 149:3221–3229
    [Google Scholar]
  18. Korshunov S. S., Imlay J. A. 2002; A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria. Mol Microbiol 43:95–106
    [Google Scholar]
  19. Lavine M. D., Strand M. R. 2002; Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295–1309
    [Google Scholar]
  20. Liochev S. I., Fridovich I. 1994; The role of in the production of HO·: in vitro and in vivo. Free Radic Biol Med 16:29–33
    [Google Scholar]
  21. Maxson M. E., Darwin A. J. 2004; Identification of inducers of the Yersinia enterocolitica phage shock protein system and comparison to the regulation of the RpoE and Cpx extracytoplasmic stress responses. J Bacteriol 186:4199–4208
    [Google Scholar]
  22. McCord J. M., Fridovich I. 1969; The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244:6056–6063
    [Google Scholar]
  23. Mylonakis E., Casadevall A., Ausubel F. M. 2007; Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog 3:e101
    [Google Scholar]
  24. Nappi A. J., Christensen B. M. 2005; Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 35:443–459
    [Google Scholar]
  25. Qazi S. N., Rees C. E., Mellits K. H., Hill P. J. 2001; Development of gfp vectors for expression in Listeria monocytogenes and other low G+C gram positive bacteria. Microb Ecol 41:301–309
    [Google Scholar]
  26. Riley G., Toma S. 1989; Detection of pathogenic Yersinia enterocolitica by using Congo red-magnesium oxalate agar medium. J Clin Microbiol 27:213–214
    [Google Scholar]
  27. Roggenkamp A., Bittner T., Leitritz L., Sing A., Heesemann J. 1997; Contribution of the Mn-cofactored superoxide dismutase (SodA) to the virulence of Yersinia enterocolitica serotype O8. Infect Immun 65:4705–4710
    [Google Scholar]
  28. Schell M. A., Lipscomb L., DeShazer D. 2008; Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei . J Bacteriol 190:2306–2313
    [Google Scholar]
  29. Scully L. R., Bidochka M. J. 2006; Developing insect models for the study of current and emerging human pathogens. FEMS Microbiol Lett 263:1–9
    [Google Scholar]
  30. Steinert M., Leippe M., Roeder T. 2003; Surrogate hosts: protozoa and invertebrates as models for studying pathogen-host interactions. Int J Med Microbiol 293:321–332
    [Google Scholar]
  31. Tan M. W. 2002; Cross-species infections and their analysis. Annu Rev Microbiol 56:539–565
    [Google Scholar]
  32. Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J. 1987; Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A 84:2833–2837
    [Google Scholar]
  33. Taylor V. L., Titball R. W., Oyston P. C. F. 2005; Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. Microbiology 151:1919–1926
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026823-0
Loading
/content/journal/micro/10.1099/mic.0.026823-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error