1887

Abstract

Surface adhesion plays an essential part in the survival of the commensal organism in the oral cavity as well as during opportunistic infections such as endocarditis. At least two types of cell surface protein involved in adhesion are found on the surface of Gram-positive bacteria: those anchored via an LPXTG motif by the enzyme sortase A (SrtA) and those associated with the cell surface by, as yet, unknown mechanisms. In mutants, LPXTG-containing proteins have been shown to be released rather than cross-linked to the cell wall. We have therefore used 2D gel electrophoresis of released proteins from an mutant as well as the wild-type strain, followed by peptide identification by MS, to identify a set of novel proteins predicted to be present on the surface of DL1. This includes two large LPXTG-linked proteins (SGO_0707 and SGO_1487), which both contain tandemly repeated sequences similar to those present in known fibrillar adhesins. A 5′-nucleotidase and a protein with a putative collagen-binding domain, both containing LPXTG motifs, were also identified. Anchorless proteins with known chaperone, stress response and elongation factor functions, apparently responsible for bacterial binding to keratinocytes and saliva-coated surfaces in the absence of the LPXTG-linked adhesins, were also associated with the cell surface. These data reveal a range of proteins to be present on the DL1 cell surface, the expression of which plays an important role in adhesion to epithelia and which represent likely candidates for novel virulence factors in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027854-0
2009-06-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1977.html?itemId=/content/journal/micro/10.1099/mic.0.027854-0&mimeType=html&fmt=ahah

References

  1. Aas J. A., Paster B. J., Stokes L. N., Olsen I., Dewhirst F. E. 2005; Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732
    [Google Scholar]
  2. Bolken T. C., Franke C. A., Jones K. F., Zeller G. O., Jones C. H., Dutton E. K., Hruby D. E. 2001; Inactivation of the srtA gene in Streptococcus gordonii inhibits cell wall anchoring of surface proteins and decreases in vitro and in vivo adhesion. Infect Immun 69:75–80
    [Google Scholar]
  3. Bowden G. H., Hardie J. M., Fillery E. D. 1976; Antigens from Actinomyces species and their value in identification. J Dent Res 55:A192–A204
    [Google Scholar]
  4. Bradway S. D., Berget E. J., Scannapieco F. A., Ramasubbu N., Zawack S., Levine M. J. 1992; Formation of salivary-mucosal pellicle: the role of transglutaminase. Biochem J 284:557–564
    [Google Scholar]
  5. Chávez de Paz L. E. 2009; Image analysis software based on color segmentation for characterization of viability and physiological activity in biofilms. Appl Environ Microbiol 75:1734–1739
    [Google Scholar]
  6. Chhatwal G. S. 2002; Anchorless adhesins and invasions of Gram-positive bacteria: a new class of virulence factors. Trends Microbiol 10:205–208
    [Google Scholar]
  7. Dickson M. A., Hahn W. C., Ino Y., Ronfard V., Wu J. Y., Weinberg R. A., Louis D. N., Li F. P., Rheinwald J. G. 2000; Human keratinocytes that express hTERT and also bypass a p16INK4a-enforced mechanism that limits normal life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 20:1436–1447
    [Google Scholar]
  8. Hussain M., Haggar A., Peters G., Chhatwal G. S., Herrmann M., Flock J. I., Sinha B. 2008; More than one tandem repeat domain of the extracellular adherence protein of Staphylococcus aureus is required for aggregation, adherence, and host invasion but not for leukocyte activation. Infect Immun 76:5615–5623
    [Google Scholar]
  9. Janulczyk R., Rasmussen M. 2001; Improved pattern for genome-based screening identifies novel cell wall-attached proteins in Gram-positive bacteria. Infect Immun 69:4019–4026
    [Google Scholar]
  10. Kerrigan S. W., Jakubovics N. S., Keane C., Maguire P., Wynne K., Jenkinson H. F., Cox D. 2007; Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function. Infect Immun 75:5740–5747
    [Google Scholar]
  11. Kharat A. S., Tomasz A. 2003; Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro . Infect Immun 71:2758–2765
    [Google Scholar]
  12. Lee S. F., Boran T. L. 2003; Roles of sortase in surface expression of the major protein adhesin P1, saliva-induced aggregation and adherence, and cariogenicity of Streptococcus mutans . Infect Immun 71:676–681
    [Google Scholar]
  13. McNab R., Forbes H., Handley P. S., Loach D. M., Tannock G. W., Jenkinson H. F. 1999; Cell wall-anchored CshA polypeptide (259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J Bacteriol 181:3087–3095
    [Google Scholar]
  14. Murray P. A., Prakobphol A., Lee T., Hoover C. I., Fisher S. J. 1992; Adherence of oral streptococci to salivary glycoproteins. Infect Immun 60:31–38
    [Google Scholar]
  15. Nobbs A. H., Vajna R. M., Johnson J. R., Zhang Y., Erlandsen S. L., Oli M. W., Kreth J., Brady L. J., Herzberg M. C. 2007; Consequences of a sortase A mutation in Streptococcus gordonii . Microbiology 153:4088–4097
    [Google Scholar]
  16. Paterson G. K., Mitchell T. J. 2004; The biology of Gram-positive sortase enzymes. Trends Microbiol 12:89–95
    [Google Scholar]
  17. Rogers J. D., Haase E. M., Brown A. E., Douglas C. W. I., Gwynn J. P., Scannapieco F. A. 1998; Identification and analysis of a gene ( abpA ) encoding a major amylase-binding protein in Streptococcus gordonii . Microbiology 144:1223–1233
    [Google Scholar]
  18. Schachtele C. F., Nobbs A., Zhang Y., Costalonga M., Herzberg M. C. 2007; Oral streptococci: commensals and opportunistic pathogens. In The Molecular Biology of Streptococci pp 411–462 Edited by Hakenbeck R., Chhatwal S. Norfolk, UK: Horizon Scientific Press;
    [Google Scholar]
  19. Siqueira W. L., Zhang W., Helmerhorst E. J., Gygi S. P., Oppenheim F. G. 2007; Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS. J Proteome Res 6:2152–2160
    [Google Scholar]
  20. Takahashi Y., Konishi K., Cisar J. O., Yoshikawa M. 2002; Identification and characterization of hsa , the gene encoding the sialic acid-binding adhesin of Streptococcus gordonii DL1. Infect Immun 70:1209–1218
    [Google Scholar]
  21. Takahashi Y., Yajima A., Cisar J. O., Konishi K. 2004; Functional analysis of the Streptococcus gordonii DL1 sialic acid-binding adhesin and its essential role in bacterial binding to platelets. Infect Immun 72:3876–3882
    [Google Scholar]
  22. Takamatsu D., Bensing B. A., Cheng H., Jarvis G. A., Siboo I. R., Lopéz J. A., Grifiss J. M., Sullam P. M. 2005; Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein I α . Mol Microbiol 58:380–392
    [Google Scholar]
  23. Takamatsu D., Bensing B. A., Prakobphol A., Fisher S. J., Sullam P. M. 2006; Binding of the streptococcal glycoproteins GspB and Hsa to human salivary proteins. Infect Immun 74:1933–1940
    [Google Scholar]
  24. Vickerman M. M., Iobst S., Jesionowski A. M., Gill S. R. 2007; Genome-wide transcriptional changes in Streptococcus gordonii in response to competence signaling peptide. J Bacteriol 189:7799–7807
    [Google Scholar]
  25. Wang B. Y., Kuramitsu H. K. 2005; Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii . Appl Environ Microbiol 71:354–362
    [Google Scholar]
  26. Wilkins J. C., Beighton D., Homer K. A. 2003; Effect of acidic pH on expression of surface-associated proteins of Streptococcus oralis . Appl Environ Microbiol 69:5290–5296
    [Google Scholar]
  27. Yajima A., Urano-Tashiro Y., Shimazu K., Takashima E., Takahashi Y., Konishi K. 2008; Hsa, an adhesin of Streptococcus gordonii DL1, binds to α 2–3-linked sialic acid on glycophorin A of the erythrocyte membrane. Microbiol Immunol 52:69–77
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027854-0
Loading
/content/journal/micro/10.1099/mic.0.027854-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error