1887

Abstract

Citric acid secretion by fluorescent pseudomonads has a distinct significance in microbial phosphate solubilization. The role of citrate synthase in citric acid biosynthesis and glucose catabolism in pseudomonads was investigated by overexpressing the citrate synthase () gene in ATCC 13525. The resultant ∼2-fold increase in citrate synthase activity in the -overexpressing strain (pAB7) enhanced the intracellular and extracellular citric acid yields during the stationary phase, by about 2- and 26-fold, respectively, as compared to the control, without affecting the growth rate, glucose depletion rate or biomass yield. Decreased glucose consumption was paralleled by increased gluconic acid production due to an increase in glucose dehydrogenase activity. While the extracellular acetic acid yield increased in (pAB7), pyruvic acid secretion decreased, correlating with an increase in pyruvate carboxylase activity and suggesting an increased demand for the anabolic precursor oxaloacetate. Activities of two other key enzymes, glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase, remained unaltered, and the contribution of phosphoenolpyruvate carboxylase and isocitrate lyase to glucose catabolism was negligible. Strain (pAB7) demonstrated an enhanced phosphate-solubilizing ability compared to the control. Co-expression of the PCC 6301 phosphoenolpyruvate carboxylase and genes in ATCC 13525, so as to supplement oxaloacetate for citrate biosynthesis, neither significantly affected citrate biosynthesis nor caused any change in the other physiological and biochemical parameters measured, despite approximately 1.3- and 5-fold increases in citrate synthase and phosphoenolpyruvate carboxylase activities, respectively. Thus, our results demonstrate that citrate synthase is rate-limiting in enhancing citrate biosynthesis in ATCC 13525. Significantly low extracellular citrate levels as compared to the intracellular levels in (pAB7) suggested a probable limitation of efficient citrate transport.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028878-0
2009-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2620.html?itemId=/content/journal/micro/10.1099/mic.0.028878-0&mimeType=html&fmt=ahah

References

  1. Ames B. N. 1966; Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118
    [Google Scholar]
  2. Anastassiadis S., Rehm H.-J. 2005; Continuous citric acid secretion by a high specific pH dependent active transport system in yeast Candida oleophila ATCC 20177. Electron J Biotechnol 8:146–161
    [Google Scholar]
  3. Aoshima M., Ishii M., Yamagishi A., Oshima T., Igarashi Y. 2003; Metabolic characteristics of an isocitrate dehydrogenase defective derivative of Escherichia coli BL21(DE3. Biotechnol Bioeng 84:732–737
    [Google Scholar]
  4. Basu A., Apte S. K., Phale P. S. 2006; Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl Environ Microbiol 72:2226–2230
    [Google Scholar]
  5. Buch A. B., Archana G., Naresh Kumar G. 2008; Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Res Microbiol 159:635–642
    [Google Scholar]
  6. Carson K. C., Holliday S., Glenn A. R., Dilworth M. J. 1992; Siderophore and organic acid production in root nodule bacteria. Arch Microbiol 157:264–271
    [Google Scholar]
  7. Cocaign-Bousquet M., Guyonvarch A., Lindley N. D. 1996; Growth rate-dependent modulation of carbon flux through central metabolism and the kinetic consequences for glucose-limited chemostat cultures of Corynebacterium glutamicum . Appl Environ Microbiol 62:429–436
    [Google Scholar]
  8. Cohen S. N., Chang A. C. Y., Hsu L. S. U. 1972; Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69:2110–2114
    [Google Scholar]
  9. De Maeseneire S. L., De Mey M., Vandedrinck S., Vandamme E. J. 2006; Metabolic characterization of E. coli citrate synthase and phosphoenolpyruvate carboxylase mutants in aerobic cultures. Biotechnol Lett 28:1945–1953
    [Google Scholar]
  10. Diaz-Perez A. L., Roman-Doval C., Diaz-Perez C., Cervantes C., Sosa-Aguirre C. R., Lopez-Meza J. E., Campos-Garc J. 2007; Identification of the aceA gene encoding isocitrate lyase required for the growth of Pseudomonas aeruginosa on acetate, acyclic terpenes and leucine. FEMS Microbiol Lett 269:309–316
    [Google Scholar]
  11. Donald L. J., Molgat G. F., Duckworth H. W. 1989; Cloning, sequencing, and expression of the gene for NADH-sensitive citrate synthase of Pseudomonas aeruginosa . J Bacteriol 171:5542–5550
    [Google Scholar]
  12. Emmerling M., Bailey J. E., Sauer U. 1999; Glucose catabolism of Escherichia coli strains with increased activity and altered regulation of key glycolytic enzymes. Metab Eng 1:117–127
    [Google Scholar]
  13. Guerinot M. L., Meidl E. J., Plessner O. 1990; Citrate as a siderophore in Bradyrhizobium japonicum . J Bacteriol 172:3298–3303
    [Google Scholar]
  14. Gyaneshwar P., Naresh Kumar G., Parekh L. J. 1998; Effect of buffering on the phosphate-solubilizing ability of microorganisms. World J Microbiol Biotechnol 14:669–673
    [Google Scholar]
  15. Gyaneshwar P., Naresh Kumar G., Parekh L. J., Poole P. S. 2002; Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93
    [Google Scholar]
  16. Haas D., Défago G. 2005; Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319
    [Google Scholar]
  17. Hester K. L., Lehman J., Najar F., Song L., Roe B. A., MacGregor C. H., Hager P. W., Phibbs P. V. Jr, Sokatch J. R. 2000; Crc is involved in catabolite repression control of the bkd operons of Pseudomonas putida and Pseudomonas aeruginosa . J Bacteriol 182:1144–1149
    [Google Scholar]
  18. Howes W. V., McFadden B. A. 1962; Isocitrate lyase and malate synthase in Pseudomonas indigofera. I. Suppression and stimulation during growth. J Bacteriol 84:1216–1221
    [Google Scholar]
  19. Kabir M. M., Shimizu K. 2004; Metabolic regulation analysis of icd-gene knockout Escherichia coli based on 2D electrophoresis with MALDI-TOF mass spectrometry and enzyme activity measurements. Appl Microbiol Biotechnol 65:84–96
    [Google Scholar]
  20. Khan M. S., Zaidi A., Wani P. A. 2007; Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43
    [Google Scholar]
  21. Kucey R. M. N., Janzen H. H., Leggett M. E. 1989; Microbially mediated increases in plant-available phosphorus. Adv Agron 42:199–228
    [Google Scholar]
  22. Labes M., Pühler A., Simon R. 1990; A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for gram-negative bacteria. Gene 89:37–46
    [Google Scholar]
  23. Lakshmi T. M., Helling R. B. 1976; Selection for citrate synthase deficiency in icd mutants of Escherichia coli . J Bacteriol 127:76–83
    [Google Scholar]
  24. Lessie T. G., Phibbs P. V. Jr 1984; Alternative pathways of carbohydrate utilization in pseudomonads. Annu Rev Microbiol 38:359–388
    [Google Scholar]
  25. Mailloux R. J., Lemire J., Kalyuzhnyi S., Appanna V. 2008; A novel metabolic network leads to enhanced citrate biogenesis in Pseudomonas fluorescens exposed to aluminum toxicity. Extremophiles 12:451–459
    [Google Scholar]
  26. Marshall B., Stintzi A., Gilmour C., Meyer J.-M., Poole K. 2009; Citrate-mediated iron uptake in Pseudomonas aeruginosa: involvement of the citrate-inducible FecA receptor and the FeoB ferrous iron transporter. Microbiology 155:305–315
    [Google Scholar]
  27. Matsuno K., Blais T., Serio A. W., Conway T., Henkin T. M., Sonenshein A. L. 1999; Metabolic imbalance and sporulation in an isocitrate dehydrogenase mutant of Bacillus subtilis . J Bacteriol 181:3382–3391
    [Google Scholar]
  28. Mitchell C. G., Anderson S. C. K., El-Mansi E. M. T. 1995; Purification and characterization of citrate synthase isoenzymes from Pseudomonas aeruginosa . Biochem J 309:507–511
    [Google Scholar]
  29. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Martins dos Santos V. A., Fouts D. E., Gill S. R., Pop M. other authors 2002; Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808
    [Google Scholar]
  30. Papagianni M. 2007; Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnol Adv 25:244–263
    [Google Scholar]
  31. Park S.-J., Mccabe J., Turana J., Gunsalus R. P. 1994; Regulation of the citrate synthase ( gltA) gene of Escherichia coli in response to anaerobiosis and carbon supply: role of the arcA gene product. J Bacteriol 176:5086–5092
    [Google Scholar]
  32. Peterson G. L. 1979; Review of the Folin phenol quantitation method of Lowry, Rosenberg, Farr and Randall. Anal Biochem 100:201
    [Google Scholar]
  33. Petrarulo M., Facchini P., Cerelli E., Marangella M., Linari F. 1995; Citrate in urine determined with a new citrate lyase method. Clin Chem 41:1518–1521
    [Google Scholar]
  34. Pikovskaya R. I. 1948; Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370
    [Google Scholar]
  35. Rodríguez H., Fraga R. 1999; Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339
    [Google Scholar]
  36. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Serre P. A. 1969; Citrate synthase. Methods Enzymol 13:3–11
    [Google Scholar]
  38. Srivastava S., Kausalya M. T., Archana G., Rupela O. P., Naresh Kumar G. 2006; Efficacy of organic acid secreting bacteria in solubilization of rock phosphate in acidic alfisols. In First International Meeting on Microbial Phosphate Solubilization. Series: Developments in Plant and Soil Sciences pp 117–124 vol. 102 Edited by Velazquez E., Rodriguez-Barrueco C. Berlin: Springer;
    [Google Scholar]
  39. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964
    [Google Scholar]
  40. van der Rest M. E., Siewe R. M., Abee R., Schwarz E., Oesterhelt D., Konings W. N. 1992; Nucleotide sequence and functional properties of a sodium-dependent citrate transport system from Klebsiella pneumoniae . J Biol Chem 267:8971–8989
    [Google Scholar]
  41. Viollier P. H., Nguyen K. T., Minas W., Folcher M., Dale G. E., Thompson C. J. 2001; Roles of aconitase in growth, metabolism, and morphological differentiation of Streptomyces coelicolor . J Bacteriol 183:3193–3203
    [Google Scholar]
  42. Walsh K., Koshland D. E. Jr 1985; Characterization of rate-controlling steps in vivo by use of an adjustable expression vector. Proc Natl Acad Sci U S A 82:3577–3581
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028878-0
Loading
/content/journal/micro/10.1099/mic.0.028878-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error