1887

Abstract

harbours three type VI secretion (T6S) loci. Although HSI-I has been partially studied, limited knowledge is available on the homologous loci HSI-II and HSI-III. We show that quorum sensing (QS) differentially regulates the expression of genes at all three loci. HSI-I-associated gene expression is suppressed by both the homoserine lactone transcription factor LasR and the 4-hydroxy-2-alkylquinoline (HAQ) transcriptional regulator MvfR. Conversely, both HSI-II and HSI-III loci are positively controlled by LasR and MvfR. PqsE, a key component of the MvfR regulon, is required for the expression of part of HSI-III but not HSI-II, and previously identified inhibitors of HAQ biosynthesis significantly downregulate HSI-II and -III gene expression. Animal and plant infection studies reveal that both HSI-II and -III play important roles in pathogenesis. Furthermore, analysis of a double ΔHSI-II : : III mutant suggests that these loci functionally compensate for one another in virulence. This study illustrates the contribution of the QS systems to T6S gene regulation and reveals the importance of HSI-II and -III in mediating pathogenesis. Moreover, this work provides new insights into the design and development of selective compounds that may restrict human and possibly other clinical infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029082-0
2009-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2845.html?itemId=/content/journal/micro/10.1099/mic.0.029082-0&mimeType=html&fmt=ahah

References

  1. Bingle L. E., Bailey C. M., Pallen M. J. 2008; Type VI secretion: a beginner's guide. Curr Opin Microbiol 11:3–8
    [Google Scholar]
  2. Bladergroen M. R., Badelt K., Spaink H. P. 2003; Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact 16:53–64
    [Google Scholar]
  3. Bredenbruch F., Nimtz M., Wray V., Morr M., Muller R., Haussler S. 2005; Biosynthetic pathway of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines. J Bacteriol 187:3630–3635
    [Google Scholar]
  4. Cao H., Krishnan G., Goumnerov B., Tsongalis J., Tompkins R., Rahme L. G. 2001; A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98:14613–14618
    [Google Scholar]
  5. Chang A. C. Y., Cohen S. N. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156
    [Google Scholar]
  6. Comolli J. C., Hauser A. R., Waite L., Whitchurch C. B., Mattick J. S., Engel J. N. 1999; Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect Immun 67:3625–3630
    [Google Scholar]
  7. Das S., Chakrabortty A., Banerjee R., Roychoudhury S., Chaudhuri K. 2000; Comparison of global transcription responses allows identification of Vibrio cholerae genes differentially expressed following infection. FEMS Microbiol Lett 190:87–91
    [Google Scholar]
  8. de Bruin O. M., Ludu J. S., Nano F. E. 2007; The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol 7:1
    [Google Scholar]
  9. Déziel E., Lépine F., Milot S., He J., Mindrinos M. N., Tompkins R. G., Rahme L. G. 2004; Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101:1339–1344
    [Google Scholar]
  10. Déziel E., Gopalan S., Tampakaki A. P., Lepine F., Padfield K. E., Saucier M., Xiao G., Rahme L. G. 2005; The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-l-homoserine lactones. Mol Microbiol 55:998–1014
    [Google Scholar]
  11. Diggle S. P., Lumjiaktase P., Dipilato F., Winzer K., Kunakorn M., Barrett D. A., Chhabra S. R., Camara M., Williams P. 2006; Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 13:701–710
    [Google Scholar]
  12. Filloux A., Hachani A., Bleves S. 2008; The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154:1570–1583
    [Google Scholar]
  13. Folkesson A., Lofdahl S., Normark S. 2002; The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol 153:537–545
    [Google Scholar]
  14. Gallagher L. A., McKnight S. L., Kuznetsova M. S., Pesci E. C., Manoil C. 2002; Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa . J Bacteriol 184:6472–6480
    [Google Scholar]
  15. Gray C. G., Cowley S. C., Cheung K. K., Nano F. E. 2002; The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol Lett 215:53–56
    [Google Scholar]
  16. Hentzer M., Wu H., Andersen J. B., Riedel K., Rasmussen T. B., Bagge N., Kumar N., Schembri M. A., Song Z. other authors 2003; Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815
    [Google Scholar]
  17. Kaplan E., Meier P. 1958; Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481
    [Google Scholar]
  18. Kuchma S. L., Connolly J. P., O'Toole G. A. 2005; A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa . J Bacteriol 187:1441–1454
    [Google Scholar]
  19. Lau G. W., Goumnerov B. C., Walendziewicz C. L., Hewitson J., Xiao W., Mahajan-Miklos S., Tompkins R. G., Perkins L. A., Rahme L. G. 2003; The Drosophila melanogaster Toll pathway participates in resistance to infection by the Gram-negative human pathogen Pseudomonas aeruginosa . Infect Immun 71:4059–4066
    [Google Scholar]
  20. Lehoux D. E., Sanschagrin F., Levesque R. C. 2002; Identification of in vivo essential genes from Pseudomonas aeruginosa by PCR-based signature-tagged mutagenesis. FEMS Microbiol Lett 210:73–80
    [Google Scholar]
  21. Lesic B., Rahme L. G. 2008; Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa . BMC Mol Biol 9:20
    [Google Scholar]
  22. Lesic B., Lépine F., Déziel E., Zhang J., Zhang Q., Padfield K., Castonguay M. H., Milot S., Stachel S. other authors 2007; Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 3:1229–1239
    [Google Scholar]
  23. Mah T. F., Pitts B., Pellock B., Walker G. C., Stewart P. S., O'Toole G. A. 2003; A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310
    [Google Scholar]
  24. Medina G., Juarez K., Diaz R., Soberon-Chavez G. 2003; Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology 149:3073–3081
    [Google Scholar]
  25. Morgan G. J., Hatfull G. F., Casjens S., Hendrix R. W. 2002; Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus . J Mol Biol 317:337–359
    [Google Scholar]
  26. Mougous J. D., Cuff M. E., Raunser S., Shen A., Zhou M., Gifford C. A., Goodman A. L., Joachimiak G., Ordoñez C. L. other authors 2006; A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530
    [Google Scholar]
  27. Mougous J. D., Gifford C. A., Ramsdell T. L., Mekalanos J. J. 2007; Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa . Nat Cell Biol 9:797–803
    [Google Scholar]
  28. Nano F. E., Zhang N., Cowley S. C. other authors 2004; A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 186:6430–6436
    [Google Scholar]
  29. Pallen M. J., Chaudhuri R. R., Henderson I. R. 2003; Genomic analysis of secretion systems. Curr Opin Microbiol 6:519–527
    [Google Scholar]
  30. Parsons D. A., Heffron F. 2005; sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun 73:4338–4345
    [Google Scholar]
  31. Potvin E., Lehoux D. E., Kukavica-Ibrulj I., Richard K. L., Sanschagrin F., Lau G. W., Levesque R. C. 2003; In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5:1294–1308
    [Google Scholar]
  32. Pukatzki S., Ma A. T., Sturtevant D., Krastins B., Sarracino D., Nelson W. C., Heidelberg J. F., Mekalanos J. J. 2006; Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103:1528–1533
    [Google Scholar]
  33. Pukatzki S., Ma A. T., Revel A. T., Sturtevant D., Mekalanos J. J. 2007; Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104:15508–15513
    [Google Scholar]
  34. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M. 1995; Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902
    [Google Scholar]
  35. Rahme L. G., Tan M. W., Le L., Wong S. M., Tompkins R. G., Calderwood S. B., Ausubel F. M. 1997; Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci U S A 94:13245–13250
    [Google Scholar]
  36. Rahme L. G., Ausubel F. M., Cao H., Drenkard E., Goumnerov B. C., Lau G. W., Mahajan-Miklos S., Plotnikova J., Tan M. W. other authors 2000; Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A 97:8815–8821
    [Google Scholar]
  37. Rao P. S., Yamada Y., Tan Y. P., Leung K. Y. 2004; Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol 53:573–586
    [Google Scholar]
  38. Ritter C., Luckner M. 1971; Biosynthesis of 2- n-alkyl-4-hydroxyquinoline derivates (pseudane) in Pseudomonas aeruginosa . Eur J Biochem 18:391–400
    [Google Scholar]
  39. Schell M. A., Ulrich R. L., Ribot W. J., Brueggemann E. E., Hines H. B., Chen D., Lipscomb L., Kim H. S., Mrázek J. other authors 2007; Type VI secretion is a major virulence determinant in Burkholderia mallei . Mol Microbiol 64:1466–1485
    [Google Scholar]
  40. Schuster M., Greenberg E. P. 2007; Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics 8:287
    [Google Scholar]
  41. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079
    [Google Scholar]
  42. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D'Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P. other authors 2006; Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492
    [Google Scholar]
  43. Starkey M., Rahme L. G. 2009; Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nat Protoc 4:117–124
    [Google Scholar]
  44. Stevens E. J., Ryan C. M., Friedberg J. S., Barnhill R. L., Yarmush M. L., Tompkins R. G. 1994; A quantitative model of invasive Pseudomonas infection in burn injury. J Burn Care Rehabil 15:232–235
    [Google Scholar]
  45. Suarez G., Sierra J. C., Sha J., Wang S., Erova T. E., Fadl A. A., Foltz S. M., Horneman A. J., Chopra A. K. 2008; Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila . Microb Pathog 44:344–361
    [Google Scholar]
  46. Thompson J. D., Higgins D. G., Gibson T. J. 1994; Improved sensitivity of profile searches through the use of sequence weights and gap excision. Comput Appl Biosci 10:19–29
    [Google Scholar]
  47. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095
    [Google Scholar]
  48. Wu H. Y., Chung P. C., Shih H. W., Wen S. R., Lai E. M. 2008; Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens . J Bacteriol 190:2841–2850
    [Google Scholar]
  49. Xiao G., Déziel E., He J., Lépine F., Lesic B., Castonguay M. H., Milot S., Tampakaki A. P., Stachel S. E., Rahme L. G. 2006; MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62:1689–1699
    [Google Scholar]
  50. Zheng J., Leung K. Y. 2007; Dissection of a type VI secretion system in Edwardsiella tarda . Mol Microbiol 66:1192–1206
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029082-0
Loading
/content/journal/micro/10.1099/mic.0.029082-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error