1887

Abstract

This study uses sequences from four genes, which are involved in the formation of the type III secretion apparatus, to determine the role of horizontal gene transfer in the evolution of virulence genes for the enterobacterial plant pathogens. Sequences of , , , and were compared (a) with one another, (b) with sequences of enterobacterial animal pathogens, and (c) with sequences of plant pathogenic and proteobacteria, to evaluate probable paths of lateral exchange leading to the current distribution of virulence determinants among these micro-organisms. Phylogenies were reconstructed based on , , and gene sequences using parsimony and maximum-likelihood algorithms. Virulence gene phylogenies were also compared with several housekeeping gene loci in order to evaluate patterns of lateral versus vertical acquisition. The resulting phylogenies suggest that multiple horizontal gene transfer events have occurred both within and among the enterobacterial plant pathogens and plant pathogenic and proteobacteria. sequences are the most similar, exhibiting anywhere from 2 to 50 % variation at the nucleotide level, with the highest degree of variation present between plant and animal pathogen sequences. sequences are conserved among plant and animal pathogens at the N terminus. The C-terminal domain is conserved only among the enterobacterial plant pathogens, as are the and sequences. Additionally, and sequence phylogenies suggest that at least some type III secretion system virulence genes from enterobacterial plant pathogens are related more closely to those of the genus , a conclusion neither supported nor refuted by or .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029892-0
2009-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3187.html?itemId=/content/journal/micro/10.1099/mic.0.029892-0&mimeType=html&fmt=ahah

References

  1. Allard M. W., Farris J. S., Carpenter J. 1999; Congruence among mammalian mitochondrial genes. Cladistics 15:75–84
    [Google Scholar]
  2. Bogdanove A. J., Beer S. V., Bonas U., Boucher C. A., Collmer A., Coplin D. L., Cornelis G. R., Huang H. C., Hutcheson S. W. other authors 1996; Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol Microbiol 20:681–683
    [Google Scholar]
  3. Brown E. W., Allard M. W., van der Zwet T. 1998; Phylogenetic characterization of the eubacterial lcrD gene family: molecular evolutionary aspects of pathogen induced hypersensitivity in plants. Cladistics 14:45–62
    [Google Scholar]
  4. Brown E. W., Davis R. M., Gouk C., van der Zwet T. 2000; Phylogenetic relationships of necrogenic Erwinia and Brenneria species as revealed by glyceraldehyde-3-phosphate dehydrogenase gene sequences. Int J Syst Evol Microbiol 50:2057–2068
    [Google Scholar]
  5. Chen L. L. 2006; Identification of genomic islands in six plant pathogens. Gene 374:134–141
    [Google Scholar]
  6. Cohan F. M. 1996; The role of genetic exchange in bacterial evolution. ASM News 62:631–636
    [Google Scholar]
  7. Comas I., Moya A., Azad R. K., Lawrence J. G., Gonzalez-Candelas F. 2006; The evolutionary origin of Xanthomonadales genomes and the nature of the horizontal gene transfer process. Mol Biol Evol 23:2049–2057
    [Google Scholar]
  8. Dale C., Moran N. A. 2006; Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465
    [Google Scholar]
  9. Ehrlich H. A., Gelford D., Snisky J. J. 1991; Recent advances in the polymerase chain reaction. Science 252:1643
    [Google Scholar]
  10. Farris J. S., Kallersjo M., Kluge A. G., Bult C. 1994; Testing significance of incongruence. Cladistics 10:315–319
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  12. Frati F., Simon C., Sullivan J., Swofford D. L. 1997; Evolution of the mitochondrial cytochrome oxidase II gene in Collembola. J Mol Evol 44:145–158
    [Google Scholar]
  13. Galan J. E., Collmer A. 1999; Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328
    [Google Scholar]
  14. Gophna U., Ron E. Z., Graur D. 2003; Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312:151–163
    [Google Scholar]
  15. Groisman E. A. 2001 Principles of Bacterial Pathogenesis New York: Academic Press;
    [Google Scholar]
  16. Groisman E. A., Ochman H. 1996; Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791–794
    [Google Scholar]
  17. Hacker J., Blum-Oehler G., Muhldorfer I., Tschape H. 1997; Pathogenicity islands of virulent bacteria: structure, function, and impact on microbial evolution. Mol Microbiol 23:1089–1097
    [Google Scholar]
  18. Hauben L., Moore E. R. B., Vauterin L., Steenackers L., Mergaert J., Verdonck L., Swings J. 1998; Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 21:384–397
    [Google Scholar]
  19. Huelsenbeck J. P., Ronquist F. 2001; MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755
    [Google Scholar]
  20. Krieg N. R., Holt J. G. 1985 Bergey's Manual of Systematic Bacteriology New York: Williams and Wilkins;
    [Google Scholar]
  21. Lelliott R. A., Dickey R. S. 1985; Genus VII. Erwinia . In Bergey's Manual of Systematic Bacteriology pp 469–476 Edited by Krieg N. R., Holt J. G. New York: Williams and Wilkins;
    [Google Scholar]
  22. Madden J. C., Ruiz N., Caparon M. 2001; Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in Gram-positive bacteria. Cell 104:143–152
    [Google Scholar]
  23. Maddison W. P., Maddison D. R. 2000 MacClade Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  24. Mason-Gamer R. J. 2004; Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Syst Biol 53:25–37
    [Google Scholar]
  25. Matte-Tailliez O., Brochier C., Forterre P., Philippe H. 2002; Archaeal phylogeny based on ribosomal proteins. Mol Biol Evol 19:631–639
    [Google Scholar]
  26. Naum M., Mason-Gamer R. J., Brown E. W. 2008; Is 16S rDNA a reliable phylogenetic marker to characterize relationships below the family level in the Enterobacteriaceae?. J Mol Evol 66:630–642
    [Google Scholar]
  27. Oh C. S., Kim J. F., Beer S. V. 2005; The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection. Mol Plant Pathol 6:125–138
    [Google Scholar]
  28. Rossier O., Wengelnik K., Hahn K., Bonas U. 1999; The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proc Natl Acad Sci U S A 96:9368–9373
    [Google Scholar]
  29. Schuettpelz E., Hoot S. B. 2006; Inferring the root of Isoetes: exploring alternatives in the absence of an acceptable outgroup. Syst Bot 31:258–270
    [Google Scholar]
  30. Shumann G. L. 1991 Plant Diseases: their Biology and Social Impact. St Paul, MN: American Phytopathology Society;
    [Google Scholar]
  31. Starr M. P., Chatterjee A. K. 1972; The genus Erwinia: enterobacteria pathogenic to plants and animals. Annu Rev Microbiol 26:389–426
    [Google Scholar]
  32. Sullivan J., Markert J. A., Kilpatrick C. W. 1997; Phylogeography and molecular systematics of the Peromyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. Syst Biol 46:426–440
    [Google Scholar]
  33. Swofford D. L. 2001 paup*. Phylogenetic analysis using parsimony (*and other methods), version 4b10 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  34. Swofford D. L., Olsen G. J., Waddell P. J., Hillis D. M. 1996; Phylogenetic inference. In Molecular Systematics pp 407–514 Edited by Hillis D. M., Moritz C. Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  35. Tampakaki A. P., Fadouloglou V. E., Gazi A. D., Panopoulos N. J., Kokkinidis M. 2004; Conserved features of type III secretion. Cell Microbiol 6:805–816
    [Google Scholar]
  36. Thompson J. D., Higgins D., Gibson T. J. 1994; clustal version W: a novel multiple sequence alignment program. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  37. Toth I. K., Pritchard L., Birch P. R. J. 2006; Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu Rev Phytopathol 44:305–336
    [Google Scholar]
  38. van der Zwet T., Beer S. V. 1995; Fire Blight – its Nature, Prevention, and Control: a Practical Guide to Integrated Disease Management . USDA Agricultural Information Bulletin number 631:83 pp
    [Google Scholar]
  39. Yang Z., Goldman N., Friday A. 1995; Maximum-likelihood trees from DNA sequences: a peculiar statistical estimation problem. Syst Biol 44:384–399
    [Google Scholar]
  40. Young J. M., Park D. C. 2007; Relationships of plant pathogenic enterobacteria based on partial atpD, carA, and recA as individual and concatenated nucleotide and peptide sequences. Syst Appl Microbiol 30:343–354
    [Google Scholar]
  41. Zwickl D. 2006 Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion PhD thesis University of Texas; Austin:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029892-0
Loading
/content/journal/micro/10.1099/mic.0.029892-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error