1887

Abstract

The degradation of complex substrates, like salivary mucins, requires an arsenal of glycosidases and proteases to sequentially degrade the oligosaccharides and polypeptide backbone. The mucin MUC5B is a complex oligomeric glycoprotein, heterogeneous in molecular mass (14–40×10 Da), with a diverse repertoire of oligosaccharides, differing in composition and charge. The aim of this study was to investigate whether proteolytic degradation of the mucin polypeptide backbone could be identified and if cooperation of dental biofilm bacteria was required. Cooperative bacteria-mediated proteolysis of MUC5B was determined by comparing individual species and mixed consortia of strains isolated from supragingival plaque, and freshly harvested supragingival plaque. Proteolytic activity was analysed using fluorescent labelled substrate and by visualizing mucin degradation by SDS-PAGE. Dental plaque degraded the polypeptide backbone of the salivary MUC5B mucin. The mucin was also degraded by a specific consortium of isolated species from supragingival plaque, although individual species and other consortia did not. Certain bacteria in supragingival dental plaque therefore cooperate as a consortium to proteolyse human salivary MUC5B and hydrolyse glycosides.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030536-0
2009-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2866.html?itemId=/content/journal/micro/10.1099/mic.0.030536-0&mimeType=html&fmt=ahah

References

  1. Audie J. P., Janin A., Porchet N., Copin M. C., Gosselin B., Aubert J. P. 1993; Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J Histochem Cytochem 41:1479–1485
    [Google Scholar]
  2. Beighton D., Hayday H. 1986; The influence of dieton the growth of streptococcal bacteria on the molar teeth of monkeys ( Macaca fascicularis . Arch Oral Biol 31:449–454
    [Google Scholar]
  3. Beighton D., Whiley R. A. 1990; Sialidase activity of the “ Streptococcus milleri group” and other viridans group sterptococci. J Clin Microbiol 28:1431–1433
    [Google Scholar]
  4. Bradshaw D. J., Homer K. A., Marsh P. D., Beighton D. 1994; Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140:3407–3412
    [Google Scholar]
  5. Byers H. L., Tarelli E., Homer K. A., Beighton D. 1999; Sequential deglycosylation and utilazation of the N-linked, complex-type glycans of human α 1-acid glycoprotein mediates growth of Streptococcus oralis . Glycobiology 9:469–479
    [Google Scholar]
  6. Byers H. L., Tarelli E., Homer K. A., Beighton D. 2000; Isolation and characterisation of sialidase from a strain of Streptococcus oralis . J Med Microbiol 49:235–244
    [Google Scholar]
  7. Carlstedt I., Lindgren H., Sheehan J. K. 1983; The macromolecular structure of human cervical-mucus glycoproteins. Studies on fragments obtained after reduction of disulphide bridges and after subsequent trypsin digestion. Biochem J 213:427–435
    [Google Scholar]
  8. Cowman R. A., Baron S. S. 1997; Pathway for uptake and degradation of X-prolyl tripeptides in Streptococcus mutans VA-29R and Streptococcus sanguis ATCC 10556. J Dent Res 76:1477–1484
    [Google Scholar]
  9. Henssge U., Do T., Radford D. R., Gilbert S. C., Clark D., Beighton D. 2009; Emended description of Actinomyces naeslundii and descriptions of Actinomyces oris sp.nov. and Actinomyces johnsonii sp. nov., previously identified as Actinomyces naeslundii genospecies 1, 2 and WVA 963. Int J Syst Evol Microbiol 59:509–516
    [Google Scholar]
  10. Homer K. A., Beighton D. 1992; Synergistic degradation of bovine serum albumin by mutans streptococci and other dental plaque bacteria. FEMS Microbiol Lett 69:259–262
    [Google Scholar]
  11. Homer K. A., Whiley R. A., Beighton D. 1990; Proteolytic activity of oral streptococci. FEMS Microbiol Lett 55:257–260
    [Google Scholar]
  12. Homer K. A., Kelley S., Hawkes D., Beighton D., Grootveld M. C. 1996; Metabolism of glycoprotein-derived sialic acid and N-acetylglucosamine by Streptococcus oralis . Microbiology 142:1221–1230
    [Google Scholar]
  13. Jordan H. V., Krasse B., Möller A. 1968; A method of sampling human dental plaque for certain “caries-inducing” streptococci. Arch Oral Biol 13:919–927
    [Google Scholar]
  14. Juarez Z. E., Stinson M. W. 1999; An extracellular protease of Streptococcus gordonii hydrolyzes type IV collagen and collagen analogues. Infect Immun 67:271–278
    [Google Scholar]
  15. Keates A. C., Nunes D. P., Afdhal N. H., Troxler R. F., Offner G. D. 1997; Molecular cloning of a major human gall bladder mucin: complete C-terminal sequence and genomic organization of MUC5B. Biochem J 324:295–303
    [Google Scholar]
  16. Levine M. J., Reddy M. S., Tabak L. A., Loomis R. E., Bergey E. J., Jones P. C., Cohen R. E., Stinson M. W., Al-Hashimi I. 1987; Structural aspects of salivary glycoproteins. J Dent Res 66:436–441
    [Google Scholar]
  17. Li T., Bratt P., Jonsson A. P., Ryberg M., Johansson I., Griffiths W. J., Bergman T., Strömberg N. 2000; Possible release of an ArgGlyArgProGln pentapeptide with innate immunity properties from acidic proline-rich proteins by proteolytic activity in commensal Streptococcus and Actinomyces species. Infect Immun 68:5425–5429
    [Google Scholar]
  18. Marsh P. D. 2003; Are dental diseases examples of ecological catastrophes?. Microbiology 149:279–294
    [Google Scholar]
  19. Porchet N., Pigny P., Buisine M. P., Debailleul V., Degand P., Laine A., Aubert J. P. 1995; Human mucin genes: genomic organization and expression of MUC4. MUC5AC and MUC5B. Biochem Soc Trans 23:800–805
    [Google Scholar]
  20. Rafay A. M., Homer K. A., Beighton D. 1996; Effect of mucin and glucose on proteolytic and glycosidic activities of Streptococcus oralis . J Med Microbiol 44:409–417
    [Google Scholar]
  21. Raynal B. D., Hardingham T. E., Sheehan J. K., Thornton D. J. 2003; Calcium-dependent protein interactions in MUC5B provide reversible cross-links in salivary mucus. J Biol Chem 278:28703–28710
    [Google Scholar]
  22. Reinholdt J., Tomana M., Mortensen A. B., Kilian M. 1990; Molecular aspects of immunoglobulin A1 degradation by oral streptococci. Infect Immun 58:1186–1194
    [Google Scholar]
  23. Smith K., Beighton D. 1986; The effects of the availability of diet on the levels of exoglycosidases in the supragingival plaque of macaque monkeys. J Dent Res 65:1349–1352
    [Google Scholar]
  24. Smith K., Beighton D. 1987; Proteolytic activities in the supragingival plaque of monkeys ( Macaca fascicularis . Arch Oral Biol 32:473–476
    [Google Scholar]
  25. Thomsson K. A., Prakobphol A., Leffler H., Reddy M. S., Levine M. J., Fisher S. J., Hansson G. C. 2002; The salivary mucin MG1 (MUC5B) carries a repertoire of unique oligosaccharides that is large and diverse. Glycobiology 12:1–14
    [Google Scholar]
  26. Thornton D. J., Khan N., Mehrotra R., Howard M., Veerman E. C., Packer N. H., Sheehan J. K. 1999; Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product. Glycobiology 9:293–302
    [Google Scholar]
  27. van der Hoeven J. S., Camp P. J. M. 1991; Degradation of mucin by Streptococcus oralis and Streptococcus sanguis in mixed chemostat cultures. J Dent Res 70:1041–1044
    [Google Scholar]
  28. van Klinken B. J., Dekker J., van Gool S. A., van Marle J., Buller H. A., Einerhand A. W. 1998; MUC5B is the prominent mucin in human gallbladder and is also expressed in a subset of colonic goblet cells. Am J Physiol 274:G871–G878
    [Google Scholar]
  29. Veerman E. C., van den Keybus P. A., Valentijn-Benz M., Nieuw Amerongen A. V. 1992; Isolation of different high- M r mucin species from human whole saliva. Biochem J 283:807–811
    [Google Scholar]
  30. Wickström C., Carlstedt I. 2001; N-terminal cleavage of the salivary MUC5B mucin. Analogy with the von Willebrand pro-polypeptide?. J Biol Chem 276:47116–47121
    [Google Scholar]
  31. Wickström C., Svensäter G. 2008; Salivary gel-forming mucin MUC5B – a nutrient for dental plaque bacteria. Oral Microbiol Immunol 23:177–182
    [Google Scholar]
  32. Wickström C., Davies J. R., Eriksen G. V., Veerman E. C., Carlstedt I. 1998; MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem J 334:685–693
    [Google Scholar]
  33. Wickström C., Christersson C., Davies J. R., Carlstedt I. 2000; Macromolecular organization of saliva: identification of 'insoluble' MUC5B assemblies and non-mucin proteins in the gel phase. Biochem J 351:421–428
    [Google Scholar]
  34. Wickström C., Hamilton I. R., Svensäter G. 2009; Differential metabolic activity by dental plaque bacteria in association with two preparations of MUC5B mucins in solution and in biofilms. Microbiology 155:53–60
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030536-0
Loading
/content/journal/micro/10.1099/mic.0.030536-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error