1887

Abstract

is a Gram-negative plant-pathogenic bacterium that causes crown gall disease by transferring and integrating its transferred DNA (T-DNA) into the host genome. We characterized the chromosomally encoded alpha-crystallin-type small heat-shock protein (-Hsp) HspL, which was induced by the virulence () gene inducer acetosyringone (AS). The transcription of but not three other -Hsp genes (, , ) was upregulated by AS. Further expression analysis in various mutants suggested that AS-induced transcription is not directly activated by the VirG response regulator but rather depends on the expression of VirG-activated genes encoding components of the type IV secretion system (T4SS). Among the 11 genes encoded by the operon, HspL protein levels were reduced in strains with deletions of , or . VirB protein accumulation but not transcription levels were reduced in an deletion mutant early after AS induction, implying that HspL may affect the stability of individual VirB proteins or of the T4S complex directly or indirectly. Tumorigenesis efficiency and the VirB/D4-mediated conjugal transfer of an IncQ plasmid RSF1010 derivative between strains were reduced in the absence of HspL. In conclusion, increased HspL abundance is triggered in response to certain VirB protein(s) and plays a role in optimal VirB protein accumulation, VirB/D4-mediated DNA transfer and tumorigenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030676-0
2009-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3270.html?itemId=/content/journal/micro/10.1099/mic.0.030676-0&mimeType=html&fmt=ahah

References

  1. Anand A., Uppalapati S. R., Ryu C. M., Allen S. N., Kang L., Tang Y., Mysore K. S. 2008; Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens . Plant Physiol 146:703–715
    [Google Scholar]
  2. Atmakuri K., Cascales E., Christie P. J. 2004; Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54:1199–1211
    [Google Scholar]
  3. Balsiger S., Ragaz C., Baron C., Narberhaus F. 2004; Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens . J Bacteriol 186:6824–6829
    [Google Scholar]
  4. Baron C. 2006; VirB8: a conserved type IV secretion system assembly factor and drug target. Biochem Cell Biol 84:890–899
    [Google Scholar]
  5. Baron C., Domke N., Beinhofer M., Hapfelmeier S. 2001; Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183:6852–6861
    [Google Scholar]
  6. Beijersbergen A., Dulk-Ras A. D., Schilperoort R. A., Hooykaas P. J. 1992; Conjugative transfer by the virulence system of Agrobacterium tumefaciens . Science 256:1324–1327
    [Google Scholar]
  7. Berger B. R., Christie P. J. 1994; Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176:3646–3660
    [Google Scholar]
  8. Buchanan-Wollaston V., Passiatore J. E., Cannon F. 1987; The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 328:172–175
    [Google Scholar]
  9. Cascales E., Christie P. J. 2004a; Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A 101:17228–17233
    [Google Scholar]
  10. Cascales E., Christie P. J. 2004b; Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–1173
    [Google Scholar]
  11. Chen C. Y., Kado C. I. 1996; Osa protein encoded by plasmid pSa is located at the inner membrane but does not inhibit membrane association of VirB and VirD virulence proteins in Agrobacterium tumefaciens . FEMS Microbiol Lett 135:85–92
    [Google Scholar]
  12. Cho H., Winans S. C. 2005; VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proc Natl Acad Sci U S A 102:14843–14848
    [Google Scholar]
  13. Christie P. J. 2001; Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40:294–305
    [Google Scholar]
  14. Christie P. J., Atmakuri K., Krishnamoorthy V., Jakubowski S., Cascales E. 2005; Biogenesis, architecture, and function of bacterial type iv secretion systems. Annu Rev Microbiol 59:451–485
    [Google Scholar]
  15. Dellagostin O. A., Esposito G., Eales L. J., Dale J. W., McFadden J. 1995; Activity of mycobacterial promoters during intracellular and extracellular growth. Microbiology 141:1785–1792
    [Google Scholar]
  16. Fullner K. J., Nester E. W. 1996; Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens . J Bacteriol 178:1498–1504
    [Google Scholar]
  17. Garfinkel D. J., Simpson R. B., Ream L. W., White F. F., Gordon M. P., Nester E. W. 1981; Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27:143–153
    [Google Scholar]
  18. Ilangumaran S., Shankernarayan N., Ramu G., Muthukkaruppan V. 1994; Antibody response to recombinant 65-kDa, 70-kDa and 18-kDa mycobacterial antigens in leprosy patients and healthy contacts in a leprosy-endemic population. Int J Lepr Other Mycobact Dis 62:245–255
    [Google Scholar]
  19. Judd P. K., Kumar R. B., Das A. 2005; Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. Proc Natl Acad Sci U S A 102:11498–11503
    [Google Scholar]
  20. Kado C. I., Heskett M. G. 1970; Selective media for isolation of Agrobacterium, Corynebacterium,Erwinia, Pseudomonas, and Xanthomonas . Phytopathology 60:969–976
    [Google Scholar]
  21. Kao J. C., Perry K. L., Kado C. I. 1982; Indoleacetic acid complementation and its relation to host range specifying genes on the Ti plasmid of Agrobacterium tumefaciens . Mol Gen Genet 188:425–432
    [Google Scholar]
  22. Karunakaran R., Mauchline T. H., Hosie A. H., Poole P. S. 2005; A family of promoter probe vectors incorporating autofluorescent and chromogenic reporter proteins for studying gene expression in Gram-negative bacteria. Microbiology 151:3249–3256
    [Google Scholar]
  23. Krall L., Wiedemann U., Unsin G., Weiss S., Domke N., Baron C. 2002; Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens . Proc Natl Acad Sci U S A 99:11405–11410
    [Google Scholar]
  24. Labes M., Puhler A., Simon R. 1990; A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for gram-negative bacteria. Gene 89:37–46
    [Google Scholar]
  25. Lai E. M., Kado C. I. 1998; Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens . J Bacteriol 180:2711–2717
    [Google Scholar]
  26. Lai E. M., Kado C. I. 2000; The T-pilus of Agrobacterium tumefaciens . Trends Microbiol 8:361–369
    [Google Scholar]
  27. Lai E. M., Shih H. W., Wen S. R., Cheng M. W., Hwang H. H., Chiu S. H. 2006; Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 6:4130–4136
    [Google Scholar]
  28. Lau-Wong I. C., Locke T., Ellison M. J., Raivio T. L., Frost L. S. 2008; Activation of the Cpx regulon destabilizes the F plasmid transfer activator, TraJ, via the HslVU protease in Escherichia coli . Mol Microbiol 67:516–527
    [Google Scholar]
  29. Lee L. Y., Humara J. M., Gelvin S. B. 2001; Novel constructions to enable the integration of genes into the Agrobacterium tumefaciens C58 genome. Mol Plant-Microbe Interact 14:577–579
    [Google Scholar]
  30. Li P. L., Everhart D. M., Farrand S. K. 1998; Genetic and sequence analysis of the pTiC58 trb locus, encoding a mating-pair formation system related to members of the type IV secretion family. J Bacteriol 180:6164–6172
    [Google Scholar]
  31. Lin Y. Z., Chen H. Y., Kao R., Chang S. P., Chang S. J., Lai E. M. 2008; Proteomic analysis of rice defense response induced by probenazole. Phytochemistry 69:715–728
    [Google Scholar]
  32. Lini N., Rehna E. A., Shiburaj S., Maheshwari J. J., Shankernarayan N. P., Dharmalingam K. 2008; Functional characterization of a small heat shock protein from Mycobacterium leprae . BMC Microbiol 8:208
    [Google Scholar]
  33. Liu Z., Binns A. N. 2003; Functional subsets of the VirB type IV transport complex proteins involved in the capacity of Agrobacterium tumefaciens to serve as a recipient in virB-mediated conjugal transfer of plasmid RSF1010. J Bacteriol 185:3259–3269
    [Google Scholar]
  34. Liu A. C., Shih H. W., Hsu T., Lai E. M. 2008; A citrate-inducible gene, encoding a putative tricarboxylate transporter, is downregulated by the organic solvent DMSO in Agrobacterium tumefaciens . J Appl Microbiol 105:1372–1383
    [Google Scholar]
  35. Lundquist R. C., Close T. J., Kado C. I. 1984; Genetic complementation of Agrobacterium tumefaciens Ti plasmid mutants in the virulence region. Mol Gen Genet 193:1–7
    [Google Scholar]
  36. Matuszewska M., Kuczynska-Wisnik D., Laskowska E., Liberek K. 2005; The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem 280:12292–12298
    [Google Scholar]
  37. McCullen C. A., Binns A. N. 2006; Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127
    [Google Scholar]
  38. Munchbach M., Dainese P., Staudenmann W., Narberhaus F., James P. 1999a; Proteome analysis of heat shock protein expression in Bradyrhizobium japonicum . Eur J Biochem 264:39–48
    [Google Scholar]
  39. Munchbach M., Nocker A., Narberhaus F. 1999b; Multiple small heat shock proteins in rhizobia. J Bacteriol 181:83–90
    [Google Scholar]
  40. Narberhaus F. 2002; Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93
    [Google Scholar]
  41. Nevesinjac A. Z., Raivio T. L. 2005; The Cpx envelope stress response affects expression of the type IV bundle-forming pili of enteropathogenic Escherichia coli . J Bacteriol 187:672–686
    [Google Scholar]
  42. Quandt J., Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21
    [Google Scholar]
  43. Raivio T. L. 2005; Envelope stress responses and Gram-negative bacterial pathogenesis. Mol Microbiol 56:1119–1128
    [Google Scholar]
  44. Rashkova S., Zhou X. R., Chen J., Christie P. J. 2000; Self-assembly of the Agrobacterium tumefaciens VirB11 traffic ATPase. J Bacteriol 182:4137–4145
    [Google Scholar]
  45. Rogowsky P. M., Close T. J., Chimera J. A., Shaw J. J., Kado C. I. 1987; Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169:5101–5112
    [Google Scholar]
  46. Rosen R., Buttner K., Becher D., Nakahigashi K., Yura T., Hecker M., Ron E. Z. 2002; Heat shock proteome of Agrobacterium tumefaciens: evidence for new control systems. J Bacteriol 184:1772–1778
    [Google Scholar]
  47. Rowley G., Spector M., Kormanec J., Roberts M. 2006; Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4:383–394
    [Google Scholar]
  48. Sambrook J., Russell D. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  49. Schagger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379
    [Google Scholar]
  50. Schweizer H. D. 1993; Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–834
    [Google Scholar]
  51. Shirasu K., Kado C. I. 1993; Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens . FEMS Microbiol Lett 111:287–294
    [Google Scholar]
  52. Shurvinton C. E., Ream W. 1991; Stimulation of Agrobacterium tumefaciens T-DNA transfer by overdrive depends on a flanking sequence but not on helical position with respect to the border repeat. J Bacteriol 173:5558–5563
    [Google Scholar]
  53. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  54. Stewart G. R., Newton S. M., Wilkinson K. A., Humphreys I. R., Murphy H. N., Robertson B. D., Wilkinson R. J., Young D. B. 2005; The stress-responsive chaperone alpha-crystallin 2 is required for pathogenesis of Mycobacterium tuberculosis . Mol Microbiol 55:1127–1137
    [Google Scholar]
  55. Stewart J. N., Rivera H. N., Karls R., Quinn F. D., Roman J., Rivera-Marrero C. A. 2006; Increased pathology in lungs of mice after infection with an alpha-crystallin mutant of Mycobacterium tuberculosis: changes in cathepsin proteases and certain cytokines. Microbiology 152:233–244
    [Google Scholar]
  56. Studer S., Narberhaus F. 2000; Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J Biol Chem 275:37212–37218
    [Google Scholar]
  57. Sun Y., MacRae T. H. 2005; Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci 62:2460–2476
    [Google Scholar]
  58. von Bodman S. B., McCutchan J. E., Farrand S. K. 1989; Characterization of conjugal transfer functions of Agrobacterium tumefaciens Ti plasmid pTiC58. J Bacteriol 171:5281–5289
    [Google Scholar]
  59. Ward D. V., Draper O., Zupan J. R., Zambryski P. C. 2002; Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci U S A 99:11493–11500
    [Google Scholar]
  60. Watson B., Currier T. C., Gordon M. P., Chilton M. D., Nester E. W. 1975; Plasmid required for virulence of Agrobacterium tumefaciens . J Bacteriol 123:255–264
    [Google Scholar]
  61. Wilkinson K. A., Stewart G. R., Newton S. M., Vordermeier H. M., Wain J. R., Murphy H. N., Horner K., Young D. B., Wilkinson R. J. 2005; Infection biology of a novel alpha-crystallin of Mycobacterium tuberculosis: Acr2. J Immunol 174:4237–4243
    [Google Scholar]
  62. Wu H. Y., Chung P. C., Shih H. W., Wen S. R., Lai E. M. 2008; Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens . J Bacteriol 190:2841–2850
    [Google Scholar]
  63. Yuan Q., Carle A., Gao C., Sivanesan D., Aly K. A., Hoppner C., Krall L., Domke N., Baron C. 2005; Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems. J Biol Chem 280:26349–26359
    [Google Scholar]
  64. Zahrl D., Wagner M., Bischof K., Koraimann G. 2006; Expression and assembly of a functional type IV secretion system elicit extracytoplasmic and cytoplasmic stress responses in Escherichia coli . J Bacteriol 188:6611–6621
    [Google Scholar]
  65. Zuber P., Losick R. 1983; Use of a lacZ fusion to study the role of the spoO genes of Bacillus subtilis in developmental regulation. Cell 35:275–283
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030676-0
Loading
/content/journal/micro/10.1099/mic.0.030676-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error