1887

Abstract

OmpR has been demonstrated to negatively regulate the expression of the flagellar master operon in a wide variety of bacterial species. Here we report the positive regulation of expression by OmpR in . A -dependent promoter was identified by primer extension analysis and an active region with two conserved OmpR-binding sites around the promoter was confirmed. To confirm the regulation of expression by OmpR, as well as the downstream flagellar genes , , , , and were fused to , and decreased expression of all these genes in an mutant (Δ) was detected. Furthermore, Δ was defective in bacterial motility and flagella synthesis. This defect was due to the low level of expression of in Δ since overproduction of FlhDC in Δ restored bacterial motility. The importance of two conserved OmpR-binding sites around the promoter region in the regulation of expression by OmpR was demonstrated by the fact that mutation of either one or both sites significantly decreased the promoter activity in the wild-type but not in Δ. The binding of OmpR to these two sites was also demonstrated by DNA mobility shift assay. The possible mechanism underlying this positive regulation in is discussed. To our knowledge, this is the first report to demonstrate that OmpR positively regulates expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030908-0
2009-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3622.html?itemId=/content/journal/micro/10.1099/mic.0.030908-0&mimeType=html&fmt=ahah

References

  1. Aldridge P., Hughes K. T. 2002; Regulation of flagellar assembly. Curr Opin Microbiol 5:160–165
    [Google Scholar]
  2. Aoyama T., Oka A. 1990; A common mechanism of transcriptional activation by the three positive regulators, VirG, PhoB, and OmpR. FEBS Lett 263:1–4
    [Google Scholar]
  3. Atkinson S., Throup J. P., Stewart G. S., Williams P. 1999; A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33:1267–1277
    [Google Scholar]
  4. Atkinson S., Chang C. Y., Patrick H. L., Buckley C. M., Wang Y., Sockett R. E., Camara M., Williams P. 2008; Functional interplay between the Yersinia pseudotuberculosis YpsRI and YtbRI quorum sensing systems modulates swimming motility by controlling expression of flhDC and fliA . Mol Microbiol 69:137–151
    [Google Scholar]
  5. Bertin P., Terao E., Lee E. H., Lejeune P., Colson C., Danchin A., Collatz E. 1994; The H-NS protein is involved in the biogenesis of flagella in Escherichia coli . J Bacteriol 176:5537–5540
    [Google Scholar]
  6. Bleves S., Marenne M. N., Detry G., Cornelis G. R. 2002; Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC . J Bacteriol 184:3214–3223
    [Google Scholar]
  7. Bowrin V., Brissette R., Tsung K., Inouye M. 1994; The alpha subunit of RNA polymerase specifically inhibits expression of the porin genes ompF and ompC in vivo and in vitro in Escherichia coli . FEMS Microbiol Lett 115:1–6
    [Google Scholar]
  8. Brzostek K., Brzostkowska M., Bukowska I., Karwicka E., Raczkowska A. 2007; OmpR negatively regulates expression of invasin in Yersinia enterocolitica . Microbiology 153:2416–2425
    [Google Scholar]
  9. Chilcott G. S., Hughes K. T. 2000; Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli . Microbiol Mol Biol Rev 64:694–708
    [Google Scholar]
  10. Ciacci-Woolwine F., Blomfield I. C., Richardson S. H., Mizel S. B. 1998; Salmonella flagellin induces tumor necrosis factor alpha in a human promonocytic cell line. Infect Immun 66:1127–1134
    [Google Scholar]
  11. Clarke M. B., Sperandio V. 2005; Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli . Mol Microbiol 57:1734–1749
    [Google Scholar]
  12. Clemmer K. M., Rather P. N. 2007; Regulation of flhDC expression in Proteus mirabilis . Res Microbiol 158:295–302
    [Google Scholar]
  13. Ding L., Wang Y., Hu Y., Atkinson S., Williams P., Chen S. 2009; Functional characterization of FlgM in the regulation of flagellar synthesis and motility in Yersinia pseudotuberculosis . Microbiology 155:1890–1900
    [Google Scholar]
  14. Egger L. A., Park H., Inouye M. 1997; Signal transduction via the histidyl–aspartyl phosphorelay. Genes Cells 2:167–184
    [Google Scholar]
  15. Gardel C. L., Mekalanos J. J. 1996; Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect Immun 64:2246–2255
    [Google Scholar]
  16. Heroven A. K., Dersch P. 2006; RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis . Mol Microbiol 62:1469–1483
    [Google Scholar]
  17. Heroven A. K., Bohme K., Rohde M., Dersch P. 2008; A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM. Mol Microbiol 68:1179–1195
    [Google Scholar]
  18. Horne S. M., Pruss B. M. 2006; Global gene regulation in Yersinia enterocolitica: effect of FliA on the expression levels of flagellar and plasmid-encoded virulence genes. Arch Microbiol 185:115–126
    [Google Scholar]
  19. Hu Y., Lu P., Wang Y., Ding L., Atkinson S., Chen S. 2009; OmpR positively regulates urease expression to enhance acid survival of Yersinia pseudotuberculosis . Microbiology 155:2522–2531
    [Google Scholar]
  20. James D. W., Tania A. B., Stephen P. B., Alexander G., Michael L., Richard L. 2004; Mechanisms of Transcription. In Molecular Biology of the Gene pp 347–377, 5th edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Josenhans C., Suerbaum S. 2002; The role of motility as a virulence factor in bacteria. Int J Med Microbiol 291:605–614
    [Google Scholar]
  22. Kanehisa M., Goto S., Kawashima S., Okuno Y., Hattori M. 2004; The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280
    [Google Scholar]
  23. Kim D. J., Boylan B., George N., Forst S. 2003; Inactivation of ompR promotes precocious swarming and flhDC expression in Xenorhabdus nematophila . J Bacteriol 185:5290–5294
    [Google Scholar]
  24. Ko M., Park C. 2000; H-NS-dependent regulation of flagellar synthesis is mediated by a LysR family protein. J Bacteriol 182:4670–4672
    [Google Scholar]
  25. Kutsukake K. 1997; Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium . Mol Gen Genet 254:440–448
    [Google Scholar]
  26. Kutsukake K., Ohya Y., Iino T. 1990; Transcriptional analysis of the flagellar regulon of Salmonella typhimurium . J Bacteriol 172:741–747
    [Google Scholar]
  27. Lehnen D., Blumer C., Polen T., Wackwitz B., Wendisch V. F., Unden G. 2002; LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli . Mol Microbiol 45:521–532
    [Google Scholar]
  28. Martinez-Hackert E., Stock A. M. 1997; The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. Structure 5:109–124
    [Google Scholar]
  29. Miller J. H. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Oshima T., Aiba H., Masuda Y., Kanaya S., Sugiura M., Wanner B. L., Mori H., Mizuno T. 2002; Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46:281–291
    [Google Scholar]
  31. O'Toole R., Milton D. L., Wolf-Watz H. 1996; Chemotactic motility is required for invasion of the host by the fish pathogen Vibrio anguillarum . Mol Microbiol 19:625–637
    [Google Scholar]
  32. Pratt L. A., Kolter R. 1998; Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293
    [Google Scholar]
  33. Pruss B. M. 1998; Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli . Arch Microbiol 170:141–146
    [Google Scholar]
  34. Rosqvist R., Skurnik M., Wolf-Watz H. 1988; Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Nature 334:522–524
    [Google Scholar]
  35. Sexton J. A., Pinkner J. S., Roth R., Heuser J. E., Hultgren S. J., Vogel J. P. 2004; The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J Bacteriol 186:1658–1666
    [Google Scholar]
  36. Shin S., Park C. 1995; Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702
    [Google Scholar]
  37. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  38. Smego R. A., Frean J., Koornhof H. J. 1999; Yersiniosis I: microbiological and clinicoepidemiological aspects of plague and non-plague Yersinia infections. Eur J Clin Microbiol Infect Dis 18:1–15
    [Google Scholar]
  39. Soutourina O. A., Bertin P. N. 2003; Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27:505–523
    [Google Scholar]
  40. Soutourina O., Kolb A., Krin E., Laurent-Winter C., Rimsky S., Danchin A., Bertin P. 1999; Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508
    [Google Scholar]
  41. Toutain C. M., Caizza N. C., Zegans M. E., O'Toole G. A. 2007; Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa . Res Microbiol 158:471–477
    [Google Scholar]
  42. Tran V. K., Oropeza R., Kenney L. J. 2000; A single amino acid substitution in the C terminus of OmpR alters DNA recognition and phosphorylation. J Mol Biol 299:1257–1270
    [Google Scholar]
  43. Wang S., Fleming R. T., Westbrook E. M., Matsumura P., McKay D. B. 2006; Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. J Mol Biol 355:798–808
    [Google Scholar]
  44. Wei B. L., Brun-Zinkernagel A. M., Simecka J. W., Pruss B. M., Babitzke P., Romeo T. 2001; Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli . Mol Microbiol 40:245–256
    [Google Scholar]
  45. Yona-Nadler C., Umanski T., Aizawa S., Friedberg D., Rosenshine I. 2003; Integration host factor (IHF) mediates repression of flagella in enteropathogenic and enterohaemorrhagic Escherichia coli . Microbiology 149:877–884
    [Google Scholar]
  46. Yoshida T., Qin L., Egger L. A., Inouye M. 2006; Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J Biol Chem 281:17114–17123
    [Google Scholar]
  47. Young G. M., Smith M. J., Minnich S. A., Miller V. L. 1999; The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol 181:2823–2833
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030908-0
Loading
/content/journal/micro/10.1099/mic.0.030908-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error