1887

Abstract

(formerly PA2528-PA2527-PA2526-), encoding a putative resistance nodulation cell division (RND)-type multidrug efflux pump system, was cloned from PAO1. Introduction of into YM64, a drug-hypersusceptible strain, led to elevated MICs of aztreonam, macrolides, novobiocin and tetracycline. Since and , both of which encode RND components, were essential for function, MuxABC-OpmB is thought to be a drug efflux pump with four components. One novobiocin-resistant mutant, PMX725, isolated from PMX7 showed elevated resistance not only to novobiocin but also to aztreonam, macrolides and tetracycline. Increased mRNA expression of was observed in the mutant PMX725 compared with the parental strain. Sequencing analysis revealed that a single-nucleotide insertion had occurred in the deduced promoter region for in PMX725. In this study, we have characterized the last RND-type multidrug efflux pump predicted from the genome sequence in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031260-0
2009-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3509.html?itemId=/content/journal/micro/10.1099/mic.0.031260-0&mimeType=html&fmt=ahah

References

  1. Aendekerk S., Ghysels B., Cornelis P., Baysse C. 2002; Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148:2371–2381
    [Google Scholar]
  2. Aires J. R., Kohler T., Nikaido H., Plesiat P. 1999; Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 43:2624–2628
    [Google Scholar]
  3. Akama H., Kanemaki M., Yoshimura M., Tsukihara T., Kashiwagi T., Yoneyama H., Narita S., Nakagawa A., Nakae T. 2004a; Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J Biol Chem 279:52816–52819
    [Google Scholar]
  4. Akama H., Matsuura T., Kashiwagi S., Yoneyama H., Narita S., Tsukihara T., Nakagawa A., Nakae T. 2004b; Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa . J Biol Chem 279:25939–25942
    [Google Scholar]
  5. Almeida N. F., Yan S., Lindeberg M., Studholme D. J., Schneider D. J., Condon B., Liu H., Viana C. J., Warren A. other authors 2009; A draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 22:52–62
    [Google Scholar]
  6. Baranova N., Nikaido H. 2002; The BaeSR two-component regulatory system activates transcription of the yegMNOB ( mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol 184:4168–4176
    [Google Scholar]
  7. Brazilian National Genome Project Consortium 2003; The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci U S A 100:11660–11665
    [Google Scholar]
  8. Chen W. P., Kuo T. T. 1993; A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 21:2260
    [Google Scholar]
  9. Chen J., Morita Y., Huda M. N., Kuroda T., Mizushima T., Tsuchiya T. 2002; VmrA, a member of a novel class of Na+-coupled multidrug efflux pumps from Vibrio parahaemolyticus . J Bacteriol 184:572–576
    [Google Scholar]
  10. Chuanchuen R., Narasaki C. T., Schweizer H. P. 2002; The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol 184:5036–5044
    [Google Scholar]
  11. CLSI 2006 M7–A7, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 7th edn. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  12. Dubois V., Arpin C., Dupart V., Scavelli A., Coulange L., André C., Fischer I., Grobost F., Brochet J. P. other authors 2008; Beta-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres. J Antimicrob Chemother 62:316–323
    [Google Scholar]
  13. Fralick J. A. 1996; Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli . J Bacteriol 178:5803–5805
    [Google Scholar]
  14. He G. X., Kuroda T., Mima T., Morita Y., Mizushima T., Tsuchiya T. 2004; An H+-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa . J Bacteriol 186:262–265
    [Google Scholar]
  15. Higgins M. K., Bokma E., Koronakis E., Hughes C., Koronakis V. 2004; Structure of the periplasmic component of a bacterial drug efflux pump. Proc Natl Acad Sci U S A 101:9994–9999
    [Google Scholar]
  16. Hirai K., Suzue S., Irikura T., Iyobe S., Mitsuhashi S. 1987; Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa . Antimicrob Agents Chemother 31:582–586
    [Google Scholar]
  17. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86
    [Google Scholar]
  18. Hocquet D., Muller A., Blanc K., Plesiat P., Talon D., Monnet D. L., Bertrand X. 2008; Relationship between antibiotic use and incidence of MexXY-OprM overproducers among clinical isolates of Pseudomonas aeruginosa . Antimicrob Agents Chemother 52:1173–1175
    [Google Scholar]
  19. Huang J., O'Toole P. W., Shen W., Amrine-Madsen H., Jiang X., Lobo N., Palmer L. M., Voelker L., Fan F. other authors 2004; Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus . Antimicrob Agents Chemother 48:909–917
    [Google Scholar]
  20. Ikonomidis A., Tsakris A., Kantzanou M., Spanakis N., Maniatis A. N., Pournaras S. 2008; Efflux system overexpression and decreased OprD contribute to the carbapenem heterogeneity in Pseudomonas aeruginosa . FEMS Microbiol Lett 279:36–39
    [Google Scholar]
  21. Jalal S., Ciofu O., Hoiby N., Gotoh N., Wretlind B. 2000; Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 44:710–712
    [Google Scholar]
  22. Kaatz G. W., Seo S. M., Foster T. J. 1999; Introduction of a norA promoter region mutation into the chromosome of a fluoroquinolone-susceptible strain of Staphylococcus aureus using plasmid integration. Antimicrob Agents Chemother 43:2222–2224
    [Google Scholar]
  23. Kohler T., Michea-Hamzehpour M., Henze U., Gotoh N., Curty L. K., Pechere J. C. 1997; Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa . Mol Microbiol 23:345–354
    [Google Scholar]
  24. Kube M., Migdoll A. M., Muller I., Kuhl H., Beck A., Reinhardt R., Geider K. 2008; The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia . Environ Microbiol 10:2211–2222
    [Google Scholar]
  25. Lennox E. S. 1955; Transduction of linked genetic characters of host by bacteriophage P1. Virology 1:190–206
    [Google Scholar]
  26. Lewis K. 2000; Translocases: a bacterial tunnel for drugs and proteins. Curr Biol 10:R678–R681
    [Google Scholar]
  27. Li Y., Mima T., Komori Y., Morita Y., Kuroda T., Mizushima T., Tsuchiya T. 2003; A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa . J Antimicrob Chemother 52:572–575
    [Google Scholar]
  28. Lomovskaya O., Lee A., Hoshino K., Ishida H., Mistry A., Warren M. S., Boyer E., Chamberland S., Lee V. J. 1999; Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa . Antimicrob Agents Chemother 43:1340–1346
    [Google Scholar]
  29. Masuda N., Sakagawa E., Ohya S., Gotoh N., Tsujimoto H., Nishino T. 2000; Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa . Antimicrob Agents Chemother 44:3322–3327
    [Google Scholar]
  30. Mima T., Sekiya H., Mizushima T., Kuroda T., Tsuchiya T. 2005; Gene cloning and properties of the RND-type multidrug efflux pumps MexPQ-OpmE and MexMN-OprM from Pseudomonas aeruginosa . Microbiol Immunol 49:999–1002
    [Google Scholar]
  31. Mima T., Joshi S., Gomez-Escalada M., Schweizer H. P. 2007; Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins. J Bacteriol 189:7600–7609
    [Google Scholar]
  32. Mine T., Morita Y., Kataoka A., Mizushima T., Tsuchiya T. 1999; Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa . Antimicrob Agents Chemother 43:415–417
    [Google Scholar]
  33. Morita Y., Kimura N., Mima T., Mizushima T., Tsuchiya T. 2001a; Roles of MexXY- and MexAB-multidrug efflux pumps in intrinsic multidrug resistance of Pseudomonas aeruginosa PAO1. J Gen Appl Microbiol 47:27–32
    [Google Scholar]
  34. Morita Y., Komori Y., Mima T., Kuroda T., Mizushima T., Tsuchiya T. 2001b; Construction of a series of mutants lacking all of the four major mex operons for multidrug efflux pumps or possessing each one of the operons from Pseudomonas aeruginosa PAO1: MexCD-OprJ is an inducible pump. FEMS Microbiol Lett 202:139–143
    [Google Scholar]
  35. Murata T., Gotoh N., Nishino T. 2002; Characterization of outer membrane efflux proteins OpmE, OpmD and OpmB of Pseudomonas aeruginosa: molecular cloning and development of specific antisera. FEMS Microbiol Lett 217:57–63
    [Google Scholar]
  36. Nagakubo S., Nishino K., Hirata T., Yamaguchi A. 2002; The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system. MdtABC. J Bacteriol 184:4161–4167
    [Google Scholar]
  37. Nishino K., Yamaguchi A. 2001; Analysis of a complete library of putative drug transporter genes in Escherichia coli . J Bacteriol 183:5803–5812
    [Google Scholar]
  38. Nishino K., Nikaido E., Yamaguchi A. 2007; Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 189:9066–9075
    [Google Scholar]
  39. Parkhill J., Dougan G., James K. D., Thomson N. R., Pickard D., Wain J., Churcher C., Mungall K. L., Bentley S. D. other authors 2001a; Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852
    [Google Scholar]
  40. Parkhill J., Wren B. W., Thomson N. R., Titball R. W., Holden M. T., Prentice M. B., Sebaihia M., James K. D., Churcher C. other authors 2001b; Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413:523–527
    [Google Scholar]
  41. Paulsen I. T., Press C. M., Ravel J., Kobayashi D. Y., Myers G. S., Mavrodi D. V., DeBoy R. T., Seshadri R., Ren Q. other authors 2005; Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878
    [Google Scholar]
  42. Pitout J. D., Revathi G., Chow B. L., Kabera B., Kariuki S., Nordmann P., Poirel L. 2008; Metallo-beta-lactamase-producing Pseudomonas aeruginosa isolated from a large tertiary centre in Kenya. Clin Microbiol Infect 14:755–759
    [Google Scholar]
  43. Poole K., Krebes K., McNally C., Neshat S. 1993; Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 175:7363–7372
    [Google Scholar]
  44. Poole K., Gotoh N., Tsujimoto H., Zhao Q., Wada A., Yamasaki T., Neshat S., Yamagishi J., Li X. Z., Nishino T. 1996; Overexpression of the mexC- mexD- oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa . Mol Microbiol 21:713–724
    [Google Scholar]
  45. Rella M., Haas D. 1982; Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of beta-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother 22:242–249
    [Google Scholar]
  46. Salanoubat M., Genin S., Artiguenave F., Gouzy J., Mangenot S., Arlat M., Billault A., Brottier P., Camus J. C. other authors 2002; Genome sequence of the plant pathogen Ralstonia solanacearum . Nature 415:497–502
    [Google Scholar]
  47. Schweizer H. P. 1991; EscherichiaPseudomonas shuttle vectors derived from pUC18/19. Gene 97:109–121
    [Google Scholar]
  48. Schweizer H. P. 1994; A method for construction of bacterial hosts for lac-based cloning and expression vectors: alpha-complementation and regulated expression. Biotechniques 17:452–454 456
    [Google Scholar]
  49. Schweizer H. P. 2003; Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res 2:48–62
    [Google Scholar]
  50. Sekiya H., Mima T., Morita Y., Kuroda T., Mizushima T., Tsuchiya T. 2003; Functional cloning and characterization of a multidrug efflux pump, mexHI-opmD, from a Pseudomonas aeruginosa mutant. Antimicrob Agents Chemother 47:2990–2992
    [Google Scholar]
  51. Sennhauser G., Bukowska M. A., Briand C., Grutter M. G. 2009; Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa . J Mol Biol 389:134–145
    [Google Scholar]
  52. Siu L. K., Lu P. L., Chen J. Y., Lin F. M., Chang S. C. 2003; High-level expression of ampC beta-lactamase due to insertion of nucleotides between −10 and −35 promoter sequences in Escherichia coli clinical isolates: cases not responsive to extended-spectrum-cephalosporin treatment. Antimicrob Agents Chemother 47:2138–2144
    [Google Scholar]
  53. Sobel M. L., McKay G. A., Poole K. 2003; Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 47:3202–3207
    [Google Scholar]
  54. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964
    [Google Scholar]
  55. Sulavik M. C., Houseweart C., Cramer C., Jiwani N., Murgolo N., Greene J., DiDomenico B., Shaw K. J., Miller G. H. other authors 2001; Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 45:1126–1136
    [Google Scholar]
  56. Touze T., Eswaran J., Bokma E., Koronakis E., Hughes C., Koronakis V. 2004; Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol Microbiol 53:697–706
    [Google Scholar]
  57. Vodovar N., Vallenet D., Cruveiller S., Rouy Z., Barbe V., Acosta C., Cattolico L., Jubin C., Lajus A. other authors 2006; Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila . Nat Biotechnol 24:673–679
    [Google Scholar]
  58. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. 1994; Construction of improved EscherichiaPseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa . Gene 148:81–86
    [Google Scholar]
  59. Westbrock-Wadman S., Sherman D. R., Hickey M. J., Coulter S. N., Zhu Y. Q., Warrener P., Nguyen L. Y., Shawar R. M., Folger K. R., Stover C. K. 1999; Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother 43:2975–2983
    [Google Scholar]
  60. Wolter D. J., Smith-Moland E., Goering R. V., Hanson N. D., Lister P. D. 2004; Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital. Diagn Microbiol Infect Dis 50:43–50
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031260-0
Loading
/content/journal/micro/10.1099/mic.0.031260-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error