1887

Abstract

Bacteria growing as surface-adherent biofilms are better able to withstand chemical and physical stresses than their unattached, planktonic counterparts. Using transcriptional profiling and quantitative PCR, we observed a previously uncharacterized gene, to be upregulated during MG1655 biofilm growth in a chemostat on serine-limited defined medium. A mutant, developed through targeted-insertion mutagenesis, and a -complemented strain, were obtained for further characterization. While bacterial surface colonization levels (c.f.u. cm) were similar in all three strains, the mutant strain exhibited reduced microcolony formation when observed in flow cells, and greatly enhanced flagellar motility on soft (0.3 %) agar. Complementation of restored microcolony formation and flagellar motility to wild-type levels. Cell surface hydrophobicity and twitching motility were unaffected by the presence or absence of . In contrast to the parent strain, biofilms from the mutant strain were less able to resist acid and peroxide stresses. had no significant effect on biofilm susceptibility to alkali or heat stress. Planktonic cultures from all three strains showed similar responses to these stresses. Regardless of the presence of , planktonic withstood alkali stress better than biofilm populations. Complementation of restored viability following exposure to peroxide stress, but did not restore acid resistance. Based on its influence on biofilm maturation and stress response, and effects on motility, we propose renaming the uncharacterized gene, , as (iofilm tress and otility).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031468-0
2010-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/139.html?itemId=/content/journal/micro/10.1099/mic.0.031468-0&mimeType=html&fmt=ahah

References

  1. Adams J. L., McLean R. J. C. 1999; The impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65:4285–4287
    [Google Scholar]
  2. Arnold C. N., McElhanon J., Lee A., Leonhart R., Siegele D. A. 2001; Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J Bacteriol 183:2178–2186
    [Google Scholar]
  3. Balzer G. J., McLean R. J. C. 2002; The stringent response genes relA and spoT are important for Escherichia coli biofilms under slow-growth conditions. Can J Microbiol 48:675–680
    [Google Scholar]
  4. Beloin C., Valle J., Latour-Lambert P., Faure P., Kzreminski M., Balestrino D., Haagensen J. A., Molin S., Prensier G. other authors 2004; Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674
    [Google Scholar]
  5. Blattner F. R., Plunkett G. III, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K. other authors 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474
    [Google Scholar]
  6. Costerton J. W., Cheng K.-J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464
    [Google Scholar]
  7. Davey M. E., O'Toole G. A. 2000; Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867
    [Google Scholar]
  8. Domka J., Lee J., Wood T. K. 2006; YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol 72:2449–2459
    [Google Scholar]
  9. Domka J., Lee J., Bansal T., Wood T. K. 2007; Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9:332–346
    [Google Scholar]
  10. Fabich A. J., Jones S. A., Chowdhury F. Z., Cernosek A., Anderson A., Smalley D., McHargue J. W., Hightower G. A., Smith J. T. other authors 2008; Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76:1143–1152
    [Google Scholar]
  11. Finelli A., Gallant C. V., Jarvi K., Burrows L. L. 2003; Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:2700–2710
    [Google Scholar]
  12. Graham L. L., Beveridge T. J. 1990; Evaluation of freeze-substitution and conventional embedding protocols for routine electron microscopic processing of eubacteria. J Bacteriol 172:2141–2149
    [Google Scholar]
  13. Hancock V., Klemm P. 2007; Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infect Immun 75:966–976
    [Google Scholar]
  14. Hernandez V. J., Cashel M. 1995; Changes in conserved region 3 of Escherichia coli σ70 mediate ppGpp-dependent functions in vivo. J Mol Biol 252:536–549
    [Google Scholar]
  15. Herzberg M., Kaye I. K., Peti W., Wood T. K. 2006; YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol 188:587–598
    [Google Scholar]
  16. Ju Z., Wells M. C., Heater S. J., Walter R. B. 2007; Multiple tissue gene expression analyses in Japanese medaka ( Oryzias latipes) exposed to hypoxia. Comp Biochem Physiol C Toxicol Pharmacol 145:134–144
    [Google Scholar]
  17. Junker L. M., Peters J. E., Hay A. G. 2006; Global analysis of candidate genes important for fitness in a competitive biofilm using DNA-array-based transposon mapping. Microbiology 152:2233–2245
    [Google Scholar]
  18. Junker L. M., Toba F. A., Hay A. G. 2007; Transcription in Escherichia coli PHL628 biofilms. FEMS Microbiol Lett 268:237–243
    [Google Scholar]
  19. Kang Y., Durfee T., Glasner J. D., Qiu Y., Frisch D., Winterberg K. M., Blattner F. R. 2004; Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921–4930
    [Google Scholar]
  20. Lee J., Jayaraman A., Wood T. K. 2007a; Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 7:42
    [Google Scholar]
  21. Lee J., Page R., García-Contreras R., Palermino J. M., Zhang X. S., Doshi O., Wood T. K., Peti W. 2007b; Structure and function of the Escherichia coli protein YmgB: a protein critical for biofilm formation and acid-resistance. J Mol Biol 373:11–26
    [Google Scholar]
  22. Mah T. F., Pitts B., Pellock B., Walker G. C., Stewart P. S., O'Toole G. A. 2003; A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310
    [Google Scholar]
  23. Matz C., Bergfeld T., Rice S. A., Kjelleberg S. 2004; Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 6:218–226
    [Google Scholar]
  24. McEldowney S., Fletcher M. 1986; Variability of the influence of physicochemical factors affecting bacterial adhesion to polystyrene substrata. Appl Environ Microbiol 52:460–465
    [Google Scholar]
  25. McLean R. J. C., Nickel J. C., Cheng K.-J., Costerton J. W. 1988; The ecology and pathogenicity of urease-producing bacteria in the urinary tract. Crit Rev Microbiol 16:37–79
    [Google Scholar]
  26. McLean R. J. C., Fortin D., Brown D. A. 1996; Microbial metal binding mechanisms and their relation to nuclear waste disposal. Can J Microbiol 42:392–400
    [Google Scholar]
  27. McLean R. J. C., Whiteley M., Hoskins B. C., Majors P. D., Sharma M. M. 1999; Laboratory techniques for studying biofilm growth, physiology, and gene expression in flowing systems and porous media. Methods Enzymol 310:248–264
    [Google Scholar]
  28. Merchant M. M., Welsh A. K., McLean R. J. C. 2007; Rheinheimera texasensis sp. nov., a halointolerant freshwater oligotroph. Int J Syst Evol Microbiol 57:2376–2380
    [Google Scholar]
  29. Mirza B. S., Welsh A., Hahn D. 2007; Saprophytic growth of inoculated Frankia sp. in soil microcosms. FEMS Microbiol Ecol 62:280–289
    [Google Scholar]
  30. Neidhardt F. C., Bloch P. L., Smith D. F. 1974; Culture medium for Enterobacteria. J Bacteriol 119:736–747
    [Google Scholar]
  31. O'Toole G. A., Kolter R. 1998a; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304
    [Google Scholar]
  32. O'Toole G. A., Kolter R. 1998b; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28:449–461
    [Google Scholar]
  33. Pamp S. J., Tolker-Nielsen T. 2007; Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189:2531–2539
    [Google Scholar]
  34. Prigent-Combaret C., Vidal O., Dorel C., Lejeune P. 1999; Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993–6002
    [Google Scholar]
  35. Ren D., Bedzyk L. A., Thomas S. M., Ye R. W., Wood T. K. 2004; Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515–524
    [Google Scholar]
  36. Rudd K. E., Humphrey-Smith I., Wasinger V. C., Bairoch A. 1998; Low molecular weight proteins: a challenge for post-genomic research. Electrophoresis 19:536–544
    [Google Scholar]
  37. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G. 2002; Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154
    [Google Scholar]
  38. Schembri M. A., Kjærgaard K., Klemm P. 2003; Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267
    [Google Scholar]
  39. Semmler A. B. T., Whitchurch C. B., Mattick J. S. 1999; A reexamination of twitching motility in Pseudomonas aeruginosa. Microbiology 145:2863–2873
    [Google Scholar]
  40. Whiteley M., Brown E., McLean R. J. C. 1997; An inexpensive chemostat apparatus for the study of microbial biofilms. J Microbiol Methods 30:125–132
    [Google Scholar]
  41. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P. 2001a; Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864
    [Google Scholar]
  42. Whiteley M., Ott J. R., Weaver E. A., McLean R. J. C. 2001b; Effects of community composition and growth rate on aquifer biofilm bacteria and their susceptibility to betadine disinfection. Environ Microbiol 3:43–52
    [Google Scholar]
  43. Wood T. K., Gonzalez Barrios A. F., Herzberg M., Lee J. 2006; Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 72:361–367
    [Google Scholar]
  44. Zhang X. S., Garcia-Contreras R., Wood T. K. 2007; YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol 189:3051–3062
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031468-0
Loading
/content/journal/micro/10.1099/mic.0.031468-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error