1887

Abstract

is a plant root-colonizing bacterium that exerts beneficial effects on the growth of many agricultural crops. Extracellular polysaccharides of the bacterium play an important role in its interactions with plant roots. The pRhico plasmid of Sp7, also named p90, carries several genes involved in synthesis and export of cell surface polysaccharides. We generated two Sp7 mutants impaired in two pRhico-located genes, and , encoding mannose-6-phosphate isomerase and GDP-mannose 4,6-dehydratase, respectively. Our results demonstrate that in Sp7, and are involved in lipopolysaccharide and exopolysaccharide synthesis. and mutant strains were significantly altered in their outer membrane and cytoplasmic/periplasmic protein profiles relative to the wild-type strain. Moreover, both and mutations significantly affected the bacterial responses to several stresses and antimicrobial compounds. Disruption of , but not , affected the ability of the Sp7 to form biofilms. The pleiotropic alterations observed in the mutants could be due, at least partially, to their altered lipopolysaccharides and exopolysaccharides relative to the wild-type.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031807-0
2009-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/4058.html?itemId=/content/journal/micro/10.1099/mic.0.031807-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Ames G. F. L., Spudich E. N., Nikaido H. 1974; Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations. J Bacteriol 117:406–416
    [Google Scholar]
  3. Burdman S., Jurkevitch E., Schwatsburd B., Hampel M., Okon Y. 1998; Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components. Microbiology 144:1989–1999
    [Google Scholar]
  4. Burdman S., De Mot R., Vanderleyden J., Okon Y., Jurkevitch E. 2000a; Identification and characterization of the omaA gene encoding the major outer membrane protein of Azospirillum brasilense . DNA Seq 11:225–237
    [Google Scholar]
  5. Burdman S., Okon Y., Jurkevitch E. 2000b; Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26:91–110
    [Google Scholar]
  6. Cava J. R., Elias P. M., Turowski D. A., Noel K. D. 1989; Rhizobium leguminosarum CFN42 genetic regions encoding lipopolysaccharide structures essential for complete nodule development on bean plants. J Bacteriol 171:8–15
    [Google Scholar]
  7. Croes C., Van Bastelaere E., DeClercq E., Eyers M., Vanderleyden J., Michiels K. 1991; Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid. Plasmid 26:83–93
    [Google Scholar]
  8. Darveau R. P., Hancock R. E. W. 1983; Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol 155:831–838
    [Google Scholar]
  9. Davey M. E., O'Toole G. A. 2000; Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867
    [Google Scholar]
  10. Davies B. W., Walker G. C. 2007; Identification of novel Sinorhizobium meliloti mutants compromised for oxidative stress protection and symbiosis. J Bacteriol 189:2110–2113
    [Google Scholar]
  11. de Cock H., Brandenburg K., Wiese A., Holst O., Seydel U. 1999; Non-lamellar structure and negative charges of lipopolysaccharides required for efficient folding of outer membrane protein PhoE of Escherichia coli . J Biol Chem 274:5114–5119
    [Google Scholar]
  12. De Philippis R., Vincenzini M. 1998; Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175
    [Google Scholar]
  13. D'Haeze W., Glushka J., De Rycke R., Holsters M., Carlson R. W. 2004; Structural characterization of extracellular polysaccharides of Azorhizobium caulinodans and importance for nodule initiation on Sesbania rostrata . Mol Microbiol 52:485–500
    [Google Scholar]
  14. Dharmapuri S., Yashitola J., Vishnupriya M. R., Sonti R. V. 2001; Novel genomic locus with atypical G+C content that is required for extracellular polysaccharide production and virulence in Xanthomonas oryzae pv. oryzae . Mol Plant Microbe Interact 14:1335–1339
    [Google Scholar]
  15. Dornmair K., Kiefer H., Jahnig F. 1990; Refolding of an integral membrane protein OmpA of Escherichia coli . J Biol Chem 265:18907–18911
    [Google Scholar]
  16. Dunwell J. M., Khuri S., Gane P. J. 2000; Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 64:153–179
    [Google Scholar]
  17. Dunwell J. M., Purvis A., Khuri S. 2004; Cupins: the most functionally diverse protein superfamily?. Phytochemistry 65:7–17
    [Google Scholar]
  18. Edwards-Jones B., Langford P. R., Kroll J. S., Yu J. 2004; The role of the Shigella flexneri yihE gene in LPS synthesis and virulence. Microbiology 150:1079–1084
    [Google Scholar]
  19. Figurski D. H., Helinski D. R. 1979; Replication of an origin containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652
    [Google Scholar]
  20. Fralick J. A., Burns-Keliher L. L. 1994; Additive effect of tolC and rfa mutations on the hydrophobic barrier of the outer membrane of Escherichia coli K-12. J Bacteriol 176:6404–6406
    [Google Scholar]
  21. Hall M. N., Silhavy T. J. 1981; Genetic analysis of the major outer membrane proteins of Escherichia coli . Annu Rev Genet 15:91–142
    [Google Scholar]
  22. Hancock R. E. W. 1984; Alterations in outer membrane permeability. Annu Rev Microbiol 38:237–264
    [Google Scholar]
  23. Hotte B., Rath-Arnold I., Puhler A., Simon R. 1990; Cloning and analysis of a 35.3-kilobase DNA region involved in exopolysaccharide production by Xanthomonas campestris pv. campestris . J Bacteriol 172:2804–2807
    [Google Scholar]
  24. Jackson K. D., Starkey M., Kremer S., Parsek M. R., Wozniak D. J. 2004; Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466–4475
    [Google Scholar]
  25. Janczarek M., Król J., Kutkowska J., Mazur A., Wielbo J., Borucki W., Kopcinska J., Łotocka B., Urbanik-Sypniewska T., Skorupska A. 2001; Mutation in the pssBpssA intergenic region of Rhizobium leguminosarum bv. trifolii affects the surface polysaccharides synthesis and nitrogen fixation ability. J Plant Physiol 158:1565–1574
    [Google Scholar]
  26. Jensen S. O., Reeves P. R. 1998; Domain organisation in phosphomannose isomerases types I and II. Biochim Biophys Acta 1382:5–7
    [Google Scholar]
  27. Jofré E., Lagares A., Mori G. 2004; Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production, and root colonization in Azospirillum brasilense . FEMS Microbiol Lett 231:267–275
    [Google Scholar]
  28. Kannenberg E. L., Carlson R. W. 2001; Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol Microbiol 39:379–392
    [Google Scholar]
  29. Katupitiya S., Millet J., Vesk M., Viccars L., Zeman A., Lidong Z., Elmerich C., Kennedy I. R. 1995; A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat. Appl Environ Microbiol 61:1987–1995
    [Google Scholar]
  30. Katzy E. I., Matora L. Y., Serebrennikova O. B., Scheludko A. V. 1998; Involvement of a 120-MDa plasmid of Azospirillum brasilense Sp245 in the production of lipopolysaccharides. Plasmid 40:73–83
    [Google Scholar]
  31. Kneidinger B., Graninger M., Adam G., Puchberger M., Kosma P., Zayni S., Messner P. 2001; Identification of two GDP-6-deoxy-d-lyxo-4-hexulose reductases synthesizing GDP-d-rhamnose in Aneurinibacillus thermoaerophilus L420–91. J Biol Chem 276:5577–5583
    [Google Scholar]
  32. Konnova O. N., Boiko A. S., Burygin G. L., Fedorenko Y. P., Matora L. Y., Konnova S. A., Ignatov V. V. 2008; Chemical and serological studies of liposaccharides of bacteria of the genus Azospirillum . Mikrobiologiia 77:350–357 (in Russian
    [Google Scholar]
  33. Kornmann H., Duboc P., Marison I., von Stockar U. 2003; Influence of nutritional factors on the nature, yield, and composition of exopolysaccharides produced by Gluconacetobacter xylinus I-2281. Appl Environ Microbiol 69:6091–6098
    [Google Scholar]
  34. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  35. Leigh J. A., Coplin D. L. 1992; Exopolysaccharides in plant–bacterial interactions. Annu Rev Microbiol 46:307–346
    [Google Scholar]
  36. Lerner A., Okon Y., Burdman S. 2009; The wzm gene located on the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis. Microbiology 155:791–804
    [Google Scholar]
  37. Maki M., Renkonen R. 2004; Biosynthesis of 6-deoxyhexose glycans in bacteria. Glycobiology 14:1R–15R
    [Google Scholar]
  38. Mao Y., Doyle M. P., Chen J. 2001; Insertion mutagenesis of wca reduces acid and heat tolerance of enterohemorrhagic Escherichia coli O157 : H7. J Bacteriol 183:3811–3815
    [Google Scholar]
  39. Michel G., Ball G., Goldberg J. B., Lazdunski A. 2000; Alteration of the lipopolysaccharide structure affects the functioning of the Xcp secretory system in Pseudomonas aeruginosa . J Bacteriol 182:696–703
    [Google Scholar]
  40. Michiels K. W., Croes C. L., Vanderleyden J. 1991; Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137:2241–2246
    [Google Scholar]
  41. Moens S., Vanderleyden J. 1996; Functions of bacterial flagella. Crit Rev Microbiol 22:67–100
    [Google Scholar]
  42. Nikaido H. 1989; Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 33:1831–1836
    [Google Scholar]
  43. Nikaido H. 2003; Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656
    [Google Scholar]
  44. Nogales J., Campos R., BenAbdelkhalek H., Olivarea J., Lluch C., Sanjuan J. 2002; Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris . Mol Plant Microbe Interact 15:225–232
    [Google Scholar]
  45. Ophir T., Gutnick D. L. 1994; A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745
    [Google Scholar]
  46. Ormeño-Orrillo E., Rosenblueth M., Luyten E., Vanderleyden J., Martínez-Romero E. 2008; Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899. Environ Microbiol 10:1271–1284
    [Google Scholar]
  47. Peterson A. A., Hancock R. E. W., McGroarty E. J. 1985; Binding of polycationic antibiotics to lipopolysaccharides of Pseudomonas aeruginosa . J Bacteriol 164:1256–1261
    [Google Scholar]
  48. Prouty A. M., Gunn J. S. 2003; Comparative analysis of Salmonella enterica serovar Typhimurium biofilm formation on gallstones and on glass. Infect Immun 71:7154–7158
    [Google Scholar]
  49. Reuhs B. L., Geller D. P., Kim J. S., Fox J. E., Kolli V. S. K., Pueppke S. G. 1998; Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens. Appl Environ Microbiol 64:4930–4938
    [Google Scholar]
  50. Revers L. F., Passaglia L. M. P., Marchal K., Frazzon J., Blaha C. G., Vanderleyden J., Schrank I. S. 2000; Characterization of an Azospirillum brasilense Tn 5 mutant with enhanced N2 fixation: the effect of ORF280 on nifH expression. FEMS Microbiol Lett 183:23–29
    [Google Scholar]
  51. Ried G., Hindennach I., Henning U. 1990; Role of lipopolysaccharide in assembly of Escherichia coli outer membrane proteins OmpA, OmpC, and OmpF. J Bacteriol 172:6048–6053
    [Google Scholar]
  52. Rodríguez-Cáceres E. A. 1982; Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990–991
    [Google Scholar]
  53. Sa-Correia I., Darzins A., Wang S. K., Berry A., Chakrabarty A. M. 1987; Alginate biosynthetic enzymes in mucoid and nonmucoid Pseudomonas aeruginosa: overproduction of phosphomannose isomerase, phosphomannomutase, and GDP-mannose pyrophosphorylase by overexpression of the phosphomannose isomerase ( pmi) gene. J Bacteriol 169:3224–3231
    [Google Scholar]
  54. Schmidt M., Arnold W., Niemann A., Kleickmann A., Piihler A. 1992; The Rhizobium meliloti pmi gene encodes a new type of phosphomannose isomerase. Gene 122:35–43
    [Google Scholar]
  55. Scupham A. J., Triplett E. W. 1997; Isolation and characterization of the UDP-glucose 4-epimerase-encoding gene, galE, from Brucella abortus 2308. Gene 202:53–59
    [Google Scholar]
  56. Sen K., Nikaido H. 1991; Lipopolysaccharide structure required for in vitro trimerization of Escherichia coli OmpF porin. J Bacteriol 173:926–928
    [Google Scholar]
  57. Shao J., Li M., Jia Q., Lu Y., Wang P. G. 2003; Sequence of Escherichia coli O128 antigen biosynthesis cluster and functional identification of an α-1,2-fucosyltransferase. FEBS Lett 553:99–103
    [Google Scholar]
  58. Shea C., Nunley W., Williamson J. C., Smith-Somerville H. E. 1991; Comparison of the adhesion properties of Deleya marina and the exopolysaccharide-defective mutant strain DMR. Appl Environ Microbiol 57:3107–3113
    [Google Scholar]
  59. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  60. Somers W. S., Stahl M. L., Sullivan F. X. 1998; GDP-fucose synthetase from Escherichia coli: structure of a unique member of the short-chain dehydrogenase/reductase family that catalyzes two distinct reactions at the same active site. Structure 6:1601–1612
    [Google Scholar]
  61. Somoza J. R., Menon S., Schmidt H., Joseph-McCarthy D., Dessen A., Stahl M. L., Somers W. S., Sullivan F. X. 2000; Structural and kinetic analysis of Escherichia coli GDP-mannose 4,6 dehydratase provides insights into the enzyme's catalytic mechanism and regulation by GDP-fucose. Structure 8:123–135
    [Google Scholar]
  62. Steenhoudt O., Vanderleyden J. 2000; Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506
    [Google Scholar]
  63. Stevenson G., Andrianopoulos K., Hobbs M., Reeves P. R. 1996; Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893
    [Google Scholar]
  64. Stroeher U. H., Jedani K. E., Manning P. A. 1998; Genetic organization of the regions associated with surface polysaccharide synthesis in Vibrio cholerae O1, O139 and Vibrio anguillarum O1 and O2: a review. Gene 223:269–282
    [Google Scholar]
  65. Tarrand J. J., Krieg N. R., Dobereiner J. 1978; A taxonomic study of the Spirillum lipoferum group with the description of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. . Can J Microbiol 24:967–980
    [Google Scholar]
  66. Touze T., Goude R., Georgeault S., Blanco C., Bonnassie S. 2004; Erwinia chrysanthemi O antigen is required for betaine osmoprotection in high-salt media. J Bacteriol 186:5547–5550
    [Google Scholar]
  67. Tsai C. M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119
    [Google Scholar]
  68. Uhlich G. A., Cooke P. H., Solomon E. B. 2006; Analyses of the red-dry-rough phenotype of an Escherichia coli O157 : H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microbiol 72:2564–2572
    [Google Scholar]
  69. Vanbleu E., Marchal K., Lambrecht M., Mathys J., Vanderleyden J. 2004; Annotation of the pRhico plasmid of Azospirillum brasilense reveals its role in determining the outer surface composition. FEMS Microbiol Lett 232:165–172
    [Google Scholar]
  70. Vanbleu E., Choudhury B. P., Carlson R. W., Vanderleyden J. 2005; The nodPQ genes in Azospirillum brasilense Sp7 are involved in sulfation of lipopolysaccharides. Environ Microbiol 7:1769–1774
    [Google Scholar]
  71. Vanstockem M., Michiels K., Vanderleyden J., Van Gool A. P. 1987; Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: physical analysis of Tn 5 and Tn 5-mob insertion mutants. Appl Environ Microbiol 53:410–415
    [Google Scholar]
  72. Vorholter F. J., Niehaus K., Puhler A. 2001; Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris: a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core. Mol Genet Genomics 266:79–95
    [Google Scholar]
  73. Wai S. N., Mizunoe Y., Takade A., Kawabata S. I., Yoshida S. O. 1998; Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol 64:3648–3655
    [Google Scholar]
  74. Wang H., Jiang X., Mu H., Liang X., Guan H. 2007; Structure and protective effect of exopolysaccharide from P. agglomerans strain KFS-9 against UV radiation. Microbiol Res 162:124–129
    [Google Scholar]
  75. Wei W., Jiang J., Li X., Wang L., Yang S. S. 2004; Isolation of salt-sensitive mutants from Sinorhizobium meliloti and characterization of genes involved in salt tolerance. Lett Appl Microbiol 39:278–283
    [Google Scholar]
  76. Whitfield C., Valvano M. A. 1993; Biosynthesis and expression of cell-surface polysaccharides in Gram-negative bacteria. Adv Microb Physiol 35:135–246
    [Google Scholar]
  77. Williams V., Fletcher M. 1996; Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Appl Environ Microbiol 62:100–104
    [Google Scholar]
  78. Wu B., Zhang Y., Zheng R., Guo C., Wang P. G. 2002; Bifunctional phosphomannose isomerase/GDP-d-mannose pyrophosphorylase is the point of control for GDP-d-mannose biosynthesis in Helicobacter pylori . FEBS Lett 519:87–92
    [Google Scholar]
  79. Zuleta L. F. G., Italiani V. C. S., Marques M. V. 2003; Isolation and characterization of NaCl-sensitive mutants of Caulobacter crescentus . Appl Environ Microbiol 69:3029–3035
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031807-0
Loading
/content/journal/micro/10.1099/mic.0.031807-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error