1887

Abstract

Anthranilate is an important intermediate of tryptophan metabolism. In this study, a hydroxylase system consisting of an FADH-utilizing monooxygenase (GTNG_3160) and an FAD reductase (GTNG_3158), as well as a bifunctional riboflavin kinase/FMN adenylyltransferase (GTNG_3159), encoded in the anthranilate degradation gene cluster in NG80-2 were functionally characterized . GTNG_3159 produces FAD to be reduced by GTNG_3158 and the reduced FAD (FADH) is utilized by GTNG_3160 to convert anthranilate to 3-hydroxyanthranilate (3-HAA), which is further degraded to acetyl-CoA through a -cleavage pathway also encoded in the gene cluster. Utilization of this pathway for the degradation of anthranilate and tryptophan by NG80-2 under physiological conditions was confirmed by real-time RT-PCR analysis of representative genes. This is believed to be the first time that the degradation pathway of anthranilate via 3-HAA has been characterized in a bacterium. This pathway is likely to play an important role in the survival of in the oil reservoir conditions from which strain NG80-2 was isolated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031880-0
2010-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/589.html?itemId=/content/journal/micro/10.1099/mic.0.031880-0&mimeType=html&fmt=ahah

References

  1. Agarwal R., Bonanno J. B., Burley S. K., Swaminathan S. 2006; Structure determination of an FMN reductase from Pseudomonas aeruginosa PAO1 using sulfur anomalous signal. Acta Crystallogr D Biol Crystallogr 62:383–391
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  3. Chaiyen P., Suadee C., Wilairat P. 2001; A novel two-protein component flavoprotein hydroxylase. Eur J Biochem 268:5550–5561
    [Google Scholar]
  4. Chang H. K., Mohseni P., Zylstra G. J. 2003; Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. J Bacteriol 185:5871–5881
    [Google Scholar]
  5. Cho O., Choi K. Y., Zylstra G. J., Kim Y. S., Kim S. K., Lee J. H., Sohn H. Y., Kwon G. S., Kim Y. M., Kim E. 2005; Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation. Biochem Biophys Res Commun 327:656–662
    [Google Scholar]
  6. Eichhorn E., van der Ploeg J. R., Leisinger T. 1999; Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J Biol Chem 274:26639–26646
    [Google Scholar]
  7. Entsch B., Cole L. J., Ballou D. P. 2005; Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. Arch Biochem Biophys 433:297–311
    [Google Scholar]
  8. Feng L., Wang W., Cheng J., Ren Y., Zhao G., Gao C., Tang Y., Liu X., Han W. other authors 2007; Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104:5602–5607
    [Google Scholar]
  9. Fetzner S. 2000; Enzymes involved in the aerobic bacterial degradation of N-heteroaromatic compounds: molybdenum hydroxylases and ring-opening 2,4-dioxygenases. Naturwissenschaften 87:59–69
    [Google Scholar]
  10. Friemann R., Lee K., Brown E. N., Gibson D. T., Eklund H., Ramaswamy S. 2009; Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. Acta Crystallogr D Biol Crystallogr 65:24–33
    [Google Scholar]
  11. Hayaishi O., Stanier R. Y. 1951; The bacterial oxidation of tryptophan. III. Enzymatic activities of cell-free extracts from bacteria employing the aromatic pathway. J Bacteriol 62:691–709
    [Google Scholar]
  12. Jequier E., Robinson D. S., Lovenberg W., Sjoerdsma A. 1969; Further studies on tryptophan hydroxylase in rat brainstem and beef pineal. Biochem Pharmacol 18:1071–1081
    [Google Scholar]
  13. Jouanneau Y., Micoud J., Meyer C. 2007; Purification and characterization of a three-component salicylate 1-hydroxylase from Sphingomonas sp. strain CHY-1. Appl Environ Microbiol 73:7515–7521
    [Google Scholar]
  14. Kamath A. V., Vaidyanathan C. S. 1990; New pathway for the biodegradation of indole in Aspergillus niger. Appl Environ Microbiol 56:275–280
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  16. Louie T. M., Xie X. S., Xun L. 2003; Coordinated production and utilization of FADH2 by NAD(P)H-flavin oxidoreductase and 4-hydroxyphenylacetate 3-monooxygenase. Biochemistry 42:7509–7517
    [Google Scholar]
  17. Muraki T., Taki M., Hasegawa Y., Iwaki H., Lau P. C. 2003; Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl Environ Microbiol 69:1564–1572
    [Google Scholar]
  18. Nair P. M., Vaidyanathan C. S. 1965; Anthranilic acid hydroxylase from Tecoma stans. Biochim Biophys Acta 110:521–531
    [Google Scholar]
  19. Nojiri H., Sekiguchi H., Maeda K., Urata M., Nakai S., Yoshida T., Habe H., Omori T. 2001; Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CA10. J Bacteriol 183:3663–3679
    [Google Scholar]
  20. Notomista E., Cafaro V., Bozza G., Di Donato A. 2009; Molecular determinants of the regioselectivity of toluene/ o-xylene monooxygenase from Pseudomonas sp. strain OX1. Appl Environ Microbiol 75:823–836
    [Google Scholar]
  21. Swetha V. P., Basu A., Phale P. S. 2007; Purification and characterization of 1-naphthol-2-hydroxylase from carbaryl-degrading Pseudomonas strain C4. J Bacteriol 189:2660–2666
    [Google Scholar]
  22. Tulchin N., Ornstein L., Davis B. J. 1976; A microgel system for disc electrophoresis. Anal Biochem 72:485–490
    [Google Scholar]
  23. Wang L., Tang Y., Wang S., Liu R. L., Liu M. Z., Zhang Y., Liang F. L., Feng L. 2006; Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10:347–356
    [Google Scholar]
  24. Yanofsky C. 1956; The enzymatic conversion of anthranilic acid to indole. J Biol Chem 223:171–184
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031880-0
Loading
/content/journal/micro/10.1099/mic.0.031880-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error