1887

Abstract

We investigated culture supernatant proteins from the M1 serotype of by two-dimensional gel electrophoresis and peptide mass mapping analysis, and characterized the single protein spots. Among them, we analysed the Spy0747 protein. This protein is homologous to the SsnA protein, a cell-wall-located DNase expressed in serotype 2. We designated the Spy0747 protein as SpnA. SpnA protein was also detected in the insoluble fraction of whole-cell lysates using shotgun proteomic analysis, suggesting that SpnA is also located in the cell wall. SpnA was expressed as a glutathione -transferase-fusion protein in . We confirmed that the recombinant protein had DNase activity that was dependent on Ca and Mg, like SsnA. Blood bactericidal assays and mouse infection model experiments showed that the knockout strain was less virulent than the parental strain, thus suggesting that SpnA could play an important role in virulence. Using PCR, we found that the gene was present in all clinical strains we examined. Our results, together with a previous report identifying Spy0747 as a surface-associated protein, suggest that SpnA is an important cell-wall-located DNase that is generally produced in and is involved in virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031955-0
2010-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/184.html?itemId=/content/journal/micro/10.1099/mic.0.031955-0&mimeType=html&fmt=ahah

References

  1. Ashbaugh C. D., Warren H. B., Carey V. J., Wessels M. R. 1998; Molecular analysis of the role of the group A streptococcal cysteine protease, hyaluronic acid capsule, and M protein in a murine model of human invasive soft-tissue infection. J Clin Invest 102:550–560
    [Google Scholar]
  2. Aziz R. K., Kotb M. 2008; Rise and persistence of global M1T1 clone of Streptococcus pyogenes. Emerg Infect Dis 14:1511–1517
    [Google Scholar]
  3. Aziz R. K., Ismail S. A., Park H. W., Kotb M. 2004; Post-proteomic identification of a novel phage-encoded streptodornase, Sda1, in invasive M1T1 Streptococcus pyogenes. Mol Microbiol 54:184–197
    [Google Scholar]
  4. Banks D. J., Porcella S. F., Barbian K. D., Beres S. B., Philips L. E., Voyich J. M., DeLeo F. R., Martin J. M., Somerville G. A., Musser J. M. 2004; Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J Infect Dis 190:727–738
    [Google Scholar]
  5. Beres S. B., Sylva G. L., Barbian K. D., Lei B., Hoff J. S., Mammarella N. D., Liu M. Y., Smoot J. C., Porcella S. F. other authors 2002; Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A 99:10078–10083
    [Google Scholar]
  6. Beres S. B., Richter E. W., Nagiec M. J., Sumby P., Porcella S. F., DeLeo F. R., Musser J. M. 2006; Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A Streptococcus. Proc Natl Acad Sci U S A 103:7059–7064
    [Google Scholar]
  7. Beres S. B., Sesso R., Pinto S. W., Hoe N. P., Porcella S. F., Deleo F. R., Musser J. M. 2008; Genome sequence of a Lancefield group C Streptococcus zooepidemicus strain causing epidemic nephritis: new information about an old disease. PLoS One 3:e3026
    [Google Scholar]
  8. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D. S., Weinrauch Y., Zychlinsky A. 2004; Neutrophil extracellular traps kill bacteria. Science 303:1532–1535
    [Google Scholar]
  9. Buchanan J. T., Simpson A. J., Aziz R. K., Liu G. Y., Kristian S. A., Kotb M., Feramisco J., Nizet V. 2006; DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16:396–400
    [Google Scholar]
  10. Chen C., Tang J., Dong W., Wang C., Feng Y., Wang J., Zheng F., Pan X., Liu D. other authors 2007; A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS One 2:e315
    [Google Scholar]
  11. Cone L. A., Woodard D. R., Schlievert P. M., Tomory G. S. 1987; Clinical and bacteriologic observations of a toxic shock-like syndrome due to Streptococcus pyogenes. N Engl J Med 317:146–149
    [Google Scholar]
  12. Cunningham M. W. 2000; Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13:470–511
    [Google Scholar]
  13. DeMaster E., Schnitzler N., Cheng Q., Cleary P. 2002; M+ group A streptococci are phagocytized and killed in whole blood by C5a-activated polymorphonuclear leukocytes. Infect Immun 70:350–359
    [Google Scholar]
  14. Dlakic M. 2000; Functionally unrelated signalling proteins contain a fold similar to Mg2+-dependent endonucleases. Trends Biochem Sci 25:272–273
    [Google Scholar]
  15. Emanuelsson O., Brunak S., von Heijne G., Nielsen H. 2007; Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971
    [Google Scholar]
  16. Ferreira B. T., Benchetrit L. C., De Castro A. C., Batista T. G., Barrucand L. 1992; Extracellular deoxyribonucleases of streptococci: a comparison of their occurrence and levels of production among beta-hemolytic strains of various serological groups. Zentralbl Bakteriol 277:493–503
    [Google Scholar]
  17. Ferretti J. J., McShan W. M., Ajdic D., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N. other authors 2001; Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A 98:4658–4663
    [Google Scholar]
  18. Fontaine M. C., Perez-Casal J., Willson P. J. 2004; Investigation of a novel DNase of Streptococcus suis serotype 2. Infect Immun 72:774–781
    [Google Scholar]
  19. Green N. M., Zhang S., Porcella S. F., Nagiec M. J., Barbian K. D., Beres S. B., LeFebvre R. B., Musser J. M. 2005; Genome sequence of a serotype M28 strain of group A streptococcus: potential new insights into puerperal sepsis and bacterial disease specificity. J Infect Dis 192:760–770
    [Google Scholar]
  20. Hasegawa T., Torii K., Hashikawa S., Iinuma Y., Ohta M. 2002a; Cloning and characterization of two novel DNases from Streptococcus pyogenes. Arch Microbiol 177:451–456
    [Google Scholar]
  21. Hasegawa T., Torii K., Hashikawa S., Iinuma Y., Ohta M. 2002b; Cloning and characterization of the deoxyribonuclease sda gene from Streptococcus pyogenes. Curr Microbiol 45:13–17
    [Google Scholar]
  22. Hauser A. R., Stevens D. L., Kaplan E. L., Schlievert P. M. 1991; Molecular analysis of pyrogenic exotoxins from Streptococcus pyogenes isolates associated with toxic shock-like syndrome. J Clin Microbiol 29:1562–1567
    [Google Scholar]
  23. Herwald H., Cramer H., Morgelin M., Russell W., Sollenberg U., Norrby-Teglund A., Flodgaard H., Lindbom L., Bjorck L. 2004; M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. Cell 116:367–379
    [Google Scholar]
  24. Holden M. T., Scott A., Cherevach I., Chillingworth T., Churcher C., Cronin A., Dowd L., Feltwell T., Hamlin N. other authors 2007; Complete genome of acute rheumatic fever-associated serotype M5 Streptococcus pyogenes strain Manfredo. J Bacteriol 189:1473–1477
    [Google Scholar]
  25. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M. other authors 1996; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136
    [Google Scholar]
  26. Lancefield R. C. 1957; Differentiation of group A streptococci with a common R antigen into three serological types, with special reference to the bactericidal test. J Exp Med 106:525–544
    [Google Scholar]
  27. Lukomski S., Hoe N. P., Abdi I., Rurangirwa J., Kordari P., Liu M., Dou S. J., Adams G. G., Musser J. M. 2000; Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene ( sic) in serotype M1 Streptococcus pyogenes significantly decreases mouse mucosal colonization. Infect Immun 68:535–542
    [Google Scholar]
  28. McCarty M. 1949; The inhibition of streptococcal desoxyribonuclease by rabbit and human antisera. J Exp Med 90:543–553
    [Google Scholar]
  29. McShan W. M., Ferretti J. J., Karasawa T., Suvorov A. N., Lin S., Qin B., Jia H., Kenton S., Najar F. other authors 2008; Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes. J Bacteriol 190:7773–7785
    [Google Scholar]
  30. Mitaku S., Hirokawa T., Tsuji T. 2002; Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane-water interfaces. Bioinformatics 18:608–616
    [Google Scholar]
  31. Miyakawa Y., Yamada T., Shitara M., Fukazawa Y. 1985; Electrophoretic patterns of extracellular deoxyribonuclease (DNase) and their correlation with T-type in group A streptococci. Microbiol Immunol 29:195–204
    [Google Scholar]
  32. Nakagawa I., Kurokawa K., Yamashita A., Nakata M., Tomiyasu Y., Okahashi N., Kawabata S., Yamazaki K., Shiba T. other authors 2003; Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res 13:1042–1055
    [Google Scholar]
  33. Nakamura T., Hasegawa T., Torii K., Hasegawa Y., Shimokata K., Ohta M. 2004; Two-dimensional gel electrophoresis analysis of the abundance of virulent exoproteins of group A streptococcus caused by environmental changes. Arch Microbiol 181:74–81
    [Google Scholar]
  34. Okada N., Tatsuno I., Hanski E., Caparon M., Sasakawa C. 1998; Streptococcus pyogenes protein F promotes invasion of HeLa cells. Microbiology 144:3079–3086
    [Google Scholar]
  35. Reichardt W., Muller-Alouf H., Alouf J. E., Kohler W. 1992; Erythrogenic toxins A, B and C: occurrence of the genes and exotoxin formation from clinical Streptococcus pyogenes strains associated with streptococcal toxic shock-like syndrome. FEMS Microbiol Lett 79:313–322
    [Google Scholar]
  36. Sawai J., Hasegawa T., Kamimura T., Okamoto A., Ohmori D., Nosaka N., Yamada K., Torii K., Ohta M. 2007; Growth phase-dependent effect of clindamycin on production of exoproteins by Streptococcus pyogenes. Antimicrob Agents Chemother 51:461–467
    [Google Scholar]
  37. Severin A., Nickbarg E., Wooters J., Quazi S. A., Matsuka Y. V., Murphy E., Moutsatsos I. K., Zagursky R. J., Olmsted S. B. 2007; Proteomic analysis and identification of Streptococcus pyogenes surface-associated proteins. J Bacteriol 189:1514–1522
    [Google Scholar]
  38. Smoot J. C., Barbian K. D., Van Gompel J. J., Smoot L. M., Chaussee M. S., Sylva G. L., Sturdevant D. E., Ricklefs S. M., Porcella S. F. other authors 2002; Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc Natl Acad Sci U S A 99:4668–4673
    [Google Scholar]
  39. Sumby P., Barbian K. D., Gardner D. J., Whitney A. R., Welty D. M., Long R. D., Bailey J. R., Parnell M. J., Hoe N. P. other authors 2005a; Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci U S A 102:1679–1684
    [Google Scholar]
  40. Sumby P., Porcella S. F., Madrigal A. G., Barbian K. D., Virtaneva K., Ricklefs S. M., Sturdevant D. E., Graham M. R., Vuopio-Varkila J. other authors 2005b; Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J Infect Dis 192:771–782
    [Google Scholar]
  41. Tanaka M., Hasegawa T., Okamoto A., Torii K., Ohta M. 2005; Effect of antibiotics on group A Streptococcus exoprotein production analyzed by two-dimensional gel electrophoresis. Antimicrob Agents Chemother 49:88–96
    [Google Scholar]
  42. Walker M. J., Hollands A., Sanderson-Smith M. L., Cole J. N., Kirk J. K., Henningham A., McArthur J. D., Dinkla K., Aziz R. K. other authors 2007; DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 13:981–985
    [Google Scholar]
  43. Wannamaker L. W. 1958; The differentiation of three distinct desoxyribonucleases of group A streptococci. J Exp Med 107:797–812
    [Google Scholar]
  44. Wannamaker L. W., Yasmineh W. 1967; Streptococcal nucleases. I. Further studies on the A, B, and C enzymes. J Exp Med 126:475–496
    [Google Scholar]
  45. Wannamaker L. W., Hayes B., Yasmineh W. 1967; Streptococcal nucleases. II. Characterization of DNAse D. J Exp Med 126:497–508
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031955-0
Loading
/content/journal/micro/10.1099/mic.0.031955-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error