1887

Abstract

In Gram-negative bacteria, autotransporter proteins constitute the largest family of secreted proteins, and exhibit many different functions. In recent years, research has largely focused on mechanisms of autotransporter protein translocation, where several alternative models are still being discussed. In contrast, the biogenesis of only a few autotransporters has been studied and, likewise, regulation of expression has received only very limited attention. The glycosylated autotransporter dhesin nvolved in iffuse dherence (AIDA)-I system consists of the gene, encoding a specific autotransporter adhesin heptosyltransferase (AAH), and the gene, encoding the autotransporter protein (AIDA-I). In this study, we investigated the promoter organization and transcription of these two genes using reporter plasmids carrying transcriptional fusions. The two genes, and , are transcribed as a bicistronic message. However, is additionally transcribed from its own promoter. There are two distinct start sites for each of the two genes. Interestingly, transcription of both genes is enhanced in and mutant backgrounds. Furthermore, we addressed the influence of environmental factors and different genetic backgrounds of K-12 strains on transcription activity. We found that transcription varied considerably in different K-12 laboratory strains and under different growth conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032292-0
2010-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1155.html?itemId=/content/journal/micro/10.1099/mic.0.032292-0&mimeType=html&fmt=ahah

References

  1. Appleyard R. K. 1954; Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics 39:440–452
    [Google Scholar]
  2. Artsimovitch I., Landick R. 2002; The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 109:193–203
    [Google Scholar]
  3. Bäcklund E., Markland K., Larsson G. 2008; Cell engineering of Escherichia coli allows high cell density accumulation without fed-batch process control. Bioprocess Biosyst Eng 31:11–20
    [Google Scholar]
  4. Beloin C., Michaelis K., Lindner K., Landini P., Hacker J., Ghigo J.-M., Dobrindt U. 2006; The transcriptional anti-terminator RfaH represses biofilm formation in Escherichia coli. J Bacteriol 188:1316–1331
    [Google Scholar]
  5. Benz I., Schmidt M. A. 1989; Cloning and expression of an adhesin (AIDA-I) involved in diffuse adherence of enteropathogenic Escherichia coli. Infect Immun 57:1506–1511
    [Google Scholar]
  6. Benz I., Schmidt M. A. 1992a; AIDA-I, the adhesin involved in diffuse adherence of the diarrhoeagenic Escherichia coli strain 2787 (O126 : H27), is synthesized via a precursor molecule. Mol Microbiol 6:1539–1546
    [Google Scholar]
  7. Benz I., Schmidt M. A. 1992b; Isolation and serologic characterization of AIDA-I, the adhesin mediating the diffuse adherence phenotype of the diarrhea-associated Escherichia coli strain 2787 (O126 : H27. Infect Immun 60:13–18
    [Google Scholar]
  8. Benz I., Schmidt M. A. 2001; Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol Microbiol 40:1403–1413
    [Google Scholar]
  9. Berthiaume F., Rutherford N., Mourez M. 2007; Mutations affecting the biogenesis of the AIDA-I autotransporter. Res Microbiol 158:348–354
    [Google Scholar]
  10. Brandon L. D., Goehring N., Janakiraman A., Yan A. W., Wu T., Beckwith J., Goldberg M. B. 2003; IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed. Mol Microbiol 50:45–60
    [Google Scholar]
  11. Casali N., Konieczny M., Schmidt M. A., Riley L. W. 2002; Invasion activity of a Mycobacterium tuberculosis peptide presented by the Escherichia coli AIDA autotransporter. Infect Immun 70:6846–6852
    [Google Scholar]
  12. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  13. Dautin N., Bernstein H. D. 2007; Protein secretion in Gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol 61:89–112
    [Google Scholar]
  14. Dersch P., Kneip S., Bremer E. 1994; The nucleoid-associated DNA-binding protein H-NS is required for the efficient adaptation of Escherichia coli K-12 to a cold environment. Mol Gen Genet 245:255–259
    [Google Scholar]
  15. Dorman C. J. 2004; H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400
    [Google Scholar]
  16. Fang F. C., Rimsky S. 2008; New insights into transcriptional regulation by H-NS. Curr Opin Microbiol 11:113–120
    [Google Scholar]
  17. Finlay B. B., Falkow S. 1997; Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136–169
    [Google Scholar]
  18. Frohman M. A. 1993; Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol 218:340–356
    [Google Scholar]
  19. Germer J., Becker G., Metzner M., Hengge-Aronis R. 2001; Role of activator site position and a distal UP-element half-site for sigma factor selectivity at a CRP/H-NS-activated σS-dependent promoter in Escherichia coli. Mol Microbiol 41:705–716
    [Google Scholar]
  20. Gibson T. J. 1984 Studies on the Epstein–Barr virus genome PhD thesis University of Cambridge;
  21. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  22. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala'aldeen D. 2004; Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68:692–744
    [Google Scholar]
  23. Jain S., Goldberg M. B. 2007; Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol 189:5393–5398
    [Google Scholar]
  24. Jensen K. F. 1993; The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407
    [Google Scholar]
  25. Jishage M., Ishihama A. 1997; Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110. J Bacteriol 179:959–963
    [Google Scholar]
  26. Jose J., Meyer T. F. 2007; The autodisplay story: from discovery to biotechnical and biomedical applications. Microbiol Mol Biol Rev 71:600–619
    [Google Scholar]
  27. Klauck E., Typas A., Hengge R. 2007; The sigmaS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci Prog 90:103–127
    [Google Scholar]
  28. Konieczny M. P. J., Suhr M., Noll A., Autenrieth I. B., Schmidt M. A. 2000; Cell surface presentation of recombinant (poly-)peptides including functional T cell epitopes by the AIDA autotransporter system. FEMS Immunol Med Microbiol 27:321–332
    [Google Scholar]
  29. Laarmann S., Schmidt M. A. 2003; The Escherichia coli AIDA autotransporter adhesin recognizes an integral membrane glycoprotein as receptor. Microbiology 149:1871–1882
    [Google Scholar]
  30. Lange R., Hengge-Aronis R. 1991; Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5:49–59
    [Google Scholar]
  31. Mainil J. G., Jacquemin E., Pohl P., Kaeckenbeeck A., Benz I. 2002; DNA sequences coding for the F18 fimbriae and AIDA adhesin are localised on the same plasmid in Escherichia coli isolates from piglets. Vet Microbiol 86:303–311
    [Google Scholar]
  32. Mandel M., Higa A. 1970; Calcium dependent bacteriophage DNA infection. J Mol Biol 53:159–162
    [Google Scholar]
  33. Marinus M. G., Carraway M., Frey A. Z., Brown L., Arraj J. A. 1983; Insertion mutations in the dam gene of Escherichia coli K-12. Mol Gen Genet 192:288–289
    [Google Scholar]
  34. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  35. Niewerth U., Frey A., Voss T., Le Bouguénec C., Baljer G., Franke S., Schmidt M. A. 2001; The AIDA autotransporter system is associated with F18 and Stx2e in Escherichia coli isolates from pigs diagnosed with edema disease and postweaning diarrhea. Clin Diagn Lab Immunol 8:143–149
    [Google Scholar]
  36. Orndorff P. E., Spears P. A., Schauer D., Falkow S. 1985; Two modes of control of pilA, the gene encoding type 1 pilin in Escherichia coli. J Bacteriol 164:321–330
    [Google Scholar]
  37. Powers E. L., Randall L. L. 1995; Export of periplasmic galactose-binding protein in Escherichia coli depends on the chaperone SecB. J Bacteriol 177:1906–1907
    [Google Scholar]
  38. Pritchard J., Ngeleka M., Middleton D. M. 2004; In vivo and in vitro colonization patterns of AIDA-I-positive Escherichia coli isolates from piglets with diarrhea. J Vet Diagn Invest 16:108–115
    [Google Scholar]
  39. Sambrook J., Frisch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  40. Schneider K., Beck C. F. 1986; Promoter-probe vectors for the analysis of divergently arranged promoters. Gene 42:37–48
    [Google Scholar]
  41. Soupene E., van Heeswijk W. C., Plumbridge J., Stewart V., Bertenthal D., Lee H., Prasad G., Paliy O., Charernnoppakul P., Kustu S. 2003; Physiological studies of Escherichia coli strain MG1655: growth defects and apparent cross-regulation of gene expression. J Bacteriol 185:5611–5626
    [Google Scholar]
  42. Spira B., Hu X., Ferenci T. 2008; Strain variation in ppGpp concentration and RpoS levels in laboratory strains of Escherichia coli K-12. Microbiology 154:2887–2895
    [Google Scholar]
  43. Suhr M., Benz I., Schmidt M. A. 1996; Processing of the AIDA-I precursor: removal of AIDAc and evidence for the outer membrane anchoring as a β-barrel structure. Mol Microbiol 22:31–42
    [Google Scholar]
  44. Typas A., Becker G., Hengge R. 2007; The molecular basis of selective promoter activation by the σS subunit of RNA polymerase. Mol Microbiol 63:1296–1306
    [Google Scholar]
  45. Van der Woude M. W., Henderson I. R. 2008; Regulation and function of Ag43 (Flu. Annu Rev Microbiol 62:153–169
    [Google Scholar]
  46. Wells T. J., Tree J. J., Ulett G. C., Schembri M. A. 2007; Autotransporter proteins: novel targets at the bacterial surface. FEMS Microbiol Lett 274:163–172
    [Google Scholar]
  47. Xue P., Corbett D., Goldrick M., Naylor C., Roberts I. S. 2009; Regulation of expression of the region 3 promoter of the Escherichia coli K5 capsule gene cluster involves H-NS, SlyA, and a large 5′ untranslated region. J Bacteriol 191:1838–1846
    [Google Scholar]
  48. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–111
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032292-0
Loading
/content/journal/micro/10.1099/mic.0.032292-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error