1887

Abstract

LysB, a mycobacteriophage Ms6-encoded protein, was previously identified as a lipolytic enzyme able to hydrolyse the ester bond in lipase and esterase substrates. In the present work, we show that LysB can hydrolyse lipids containing mycolic acids from the outer membrane of the mycobacterial cell wall. LysB was shown to hydrolyse the mycolic acids from the mycolyl-arabinogalactan–peptidoglycan complex where the mycolates of the inner leaflet of the outer membrane are covalently attached to an arabinosyl head group. In addition, treatment of the extractable lipids from , BCG and H37Ra with LysB showed that trehalose 6,6′-dimycolate (TDM), a trehalose diester of two mycolic acid molecules, was hydrolysed by the enzyme. We have also determined the structures of the mycolic acid molecules that form the TDM. The identification of a phage-encoded enzyme that targets the outer membrane of the mycobacterial cell wall enhances our understanding of the mechanism of mycobacteriophage lysis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032821-0
2010-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1497.html?itemId=/content/journal/micro/10.1099/mic.0.032821-0&mimeType=html&fmt=ahah

References

  1. Barry C. E. III, Lee R. E., Mdluli K., Sampson A. E., Schroeder B. G., Slayden R. A., Yuan Y. 1998; Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37:143–179
    [Google Scholar]
  2. Berry J., Summer E. J., Struck D. K., Young R. 2008; The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. Mol Microbiol 70:341–351
    [Google Scholar]
  3. Bhamidi S., Scherman M. S., Rithner C. D., Prenni J. E., Chatterjee D., Khoo K.-H., McNeil M. 2008; The identification and location of succinyl residues and the characterization of the interior arabinan region allow for a model of the complete primary structure of Mycobacterium tuberculosis mycolyl arabinogalactan. J Biol Chem 283:12992–13000
    [Google Scholar]
  4. Crick D. C., Brennan P. J. 2008; Biosynthesis of the arabinogalactan–peptidoglycan complex of Mycobacterium tuberculosis. In The Mycobacterial Cell Envelope pp 25–40 Edited by Daffé M., Reyrat J.-M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Daffé M. 2008; The global architecture of the mycobacterial cell envelope. In The Mycobacterial Cell Envelope pp 3–11 Edited by Daffé M., Reyrat J.-M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Daffé M., Draper P. 1998; The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203
    [Google Scholar]
  7. Fischetti V. A. 2001; Phage antibacterials make a comeback. Nat Biotechnol 19:734–735
    [Google Scholar]
  8. Fischetti V. A. 2005; Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496
    [Google Scholar]
  9. Fujita Y., Naka T., McNeil M. R., Yano I. 2005; Intact molecular characterization of cord factor (trehalose 6,6′-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151:3403–3416
    [Google Scholar]
  10. Garcia M., Pimentel M., Moniz-Pereira J. 2002; Expression of mycobacteriophage Ms6 lysis genes is driven by two sigma (70)-like promoters and is dependent on a transcription termination signal present in the leader RNA. J Bacteriol 184:3034–3043
    [Google Scholar]
  11. Gil F., Catalao M. J., Moniz-Pereira J., Leandro P., McNeil M., Pimentel M. 2008; The lytic cassette of mycobacteriophage Ms6 encodes an enzyme with lipolytic activity. Microbiology 154:1364–1371
    [Google Scholar]
  12. Hatfull G. F., Pedulla M. L., Jacobs-Sera D., Cichon P. M., Foley A., Ford M. E., Gonda R. M., Houtz J. M., Hryckowian A. J. other authors 2006; Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet 2:e92
    [Google Scholar]
  13. Hoffmann C., Leis A., Niederweis M., Plitzko J. M., Engelhardt H. 2008; Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105:3963–3967
    [Google Scholar]
  14. Indrigo J., Hunter R. L. Jr, Actor J. K. 2002; Influence of trehalose 6,6′-dimycolate (TDM) during mycobacterial infection of bone marrow macrophages. Microbiology 148:1991–1998
    [Google Scholar]
  15. Liu J., Barry C. E. III, Besra G. S., Nikaido H. 1996; Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 271:29545–29551
    [Google Scholar]
  16. Loeffler J. M., Nelson D., Fischetti V. A. 2001; Rapid killing of Streptococcus pneumoniae with bacteriophage cell wall hydrolase. Science 294:2170–2172
    [Google Scholar]
  17. Marrakchi H., Bardou F., Lanéele M., Daffé M. 2008; A comprehensive overview of mycolic acid structure and biosynthesis. In The Mycobacterial Cell Envelope pp 41–62 Edited by Daffé M., Reyrat J.-M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Minnikin D. E. 1982; Lipids: complex lipids, their chemistry, biosynthesis and roles. In The Biology of Mycobacteria:, Physiology, Identification and Classification vol. 1 pp 95–184 Edited by Ratledge C., Stanford J. L. London: Academic Press;
    [Google Scholar]
  19. Mompon B., Federici C., Toubiana R., Lederer E. 1978; Isolation and structural determination of a “cord-factor” (trehalose 6,6′ dimycolate) from Mycobacterium smegmatis. Chem Phys Lipids 21:97–101
    [Google Scholar]
  20. Payne K., Sun Q., Sacchettini J., Hatfull G. F. 2009; Mycobacteriophage lysin B is a novel mycolylarabinogalactan esterase. Mol Microbiol 73:367–381
    [Google Scholar]
  21. Phetsuksiri B., Baulard A. R., Cooper A. M., Minnikin D. E., Douglas J. D., Besra G. S., Brennan P. J. 1999; Antimycobacterial activities of isoxyl and new derivatives through the inhibition of mycolic acid synthesis. Antimicrob Agents Chemother 43:1042–1051
    [Google Scholar]
  22. Portugal I., Anes E., Moniz-Pereira J. 1989; Temperate mycobacteriophage from M. smegmatis. Acta Leprol 7:243–244
    [Google Scholar]
  23. Rao V., Fujiwara N., Porcelli S. A., Glickman M. S. 2005; Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201:535–543
    [Google Scholar]
  24. Schuch R., Nelson D., Fischetti V. A. 2002; A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889
    [Google Scholar]
  25. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919
    [Google Scholar]
  26. Summer E. J., Berry J., Tran T. A., Niu L., Struck D. K., Young R. 2007; Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts. J Mol Biol 373:1098–1112
    [Google Scholar]
  27. Yoong P., Schuch R., Nelson D., Fischetti V. A. 2004; Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol 186:4808–4812
    [Google Scholar]
  28. Young R. 2005; Phage lysis. In Phages: Their Role in Bacterial Pathogenesis and Biotechnology pp 92–127 Edited by Waldor M. K., Friedman D. I., Adhya S. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Young I., Wang I., Roof W. D. 2000; Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128
    [Google Scholar]
  30. Zimmer M., Vukov N., Scherer S., Loessner M. J. 2002; The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol 68:5311–5317
    [Google Scholar]
  31. Zuber B., Chami M., Houssin C., Dubochet J., Griffiths G., Daffé M. 2008; Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190:5672–5680
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032821-0
Loading
/content/journal/micro/10.1099/mic.0.032821-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error