1887

Abstract

Disulfide bond formation in periplasmic proteins is catalysed by the DsbA/DsbB system in most Gram-negative bacteria. serovar Typhimurium also encodes a paralogous pair of proteins to DsbA and DsbB, DsbL and DsbI, respectively, downstream of a periplasmic arylsulfate sulfotransferase (ASST). We show that DsbL and DsbI function as a redox pair contributing to periplasmic disulfide bond formation and, as such, affect transcription of the pathogenicity island 1 (SPI1) type three secretion system genes and activation of the RcsCDB system, as well as ASST activity. In contrast to DsbA/DsbB, however, the DsbL/DsbI system cannot catalyse the disulfide bond formation required for flagellar assembly. Phylogenic analysis suggests that the genes are ancestral in the , but have been lost in many lineages. Deletion of confers no virulence defect during acute infection of mice.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032904-0
2009-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/4014.html?itemId=/content/journal/micro/10.1099/mic.0.032904-0&mimeType=html&fmt=ahah

References

  1. Bajaj V., Hwang C., Lee C. A. 1995; HilA is a novel OmpR/ToxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol Microbiol 18:715–727
    [Google Scholar]
  2. Bardwell J. C., McGovern K., Beckwith J. 1991; Identification of a protein required for disulfide bond formation in vivo. Cell 67:581–589
    [Google Scholar]
  3. Bouwman C. W., Kohli M., Killoran A., Touchie G. A., Kadner R. J., Martin N. L. 2003; Characterization of SrgA, a Salmonella enterica serovar Typhimurium virulence plasmid-encoded paralogue of the disulfide oxidoreductase DsbA, essential for biogenesis of plasmid-encoded fimbriae. J Bacteriol 185:991–1000
    [Google Scholar]
  4. Cherepanov P. P., Wackernagel W. 1995; Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14
    [Google Scholar]
  5. Collet J. F., Bardwell J. C. 2002; Oxidative protein folding in bacteria. Mol Microbiol 44:1–8
    [Google Scholar]
  6. Dailey F. E., Berg H. C. 1993; Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli . Proc Natl Acad Sci U S A 90:1043–1047
    [Google Scholar]
  7. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  8. Ellermeier C. D., Slauch J. M. 2004; RtsA coordinately regulates DsbA and the Salmonella pathogenicity island 1 type III secretion system. J Bacteriol 186:68–79
    [Google Scholar]
  9. Ellermeier C. D., Janakiraman A., Slauch J. M. 2002; Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 290:153–161
    [Google Scholar]
  10. Ellermeier C. D., Ellermeier J. R., Slauch J. M. 2005; HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol 57:691–705
    [Google Scholar]
  11. Eriksson S., Lucchini S., Thompson A., Rhen M., Hinton J. C. 2003; Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica . Mol Microbiol 47:103–118
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  13. Godlewska R., Dzwonek A., Mikula M., Ostrowski J., Pawlowski M., Bujnicki J. M., Jagusztyn-Krynicka E. K. 2006; Helicobacter pylori protein oxidation influences the colonization process. Int J Med Microbiol 296:321–324
    [Google Scholar]
  14. Grimshaw J. P., Stirnimann C. U., Brozzo M. S., Malojcic G., Grutter M. G., Capitani G., Glockshuber R. 2008; DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli . J Mol Biol 380:667–680
    [Google Scholar]
  15. Ha U. H., Wang Y., Jin S. 2003; DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors. Infect Immun 71:1590–1595
    [Google Scholar]
  16. Haldimann A., Wanner B. L. 2001; Conditional-replication, integration, excision, and retrieval plasmid–host systems for gene structure–function studies of bacteria. J Bacteriol 183:6384–6393
    [Google Scholar]
  17. Inaba K., Ito K. 2008; Structure and mechanisms of the DsbB–DsbA disulfide bond generation machine. Biochim Biophys Acta 1783:520–529
    [Google Scholar]
  18. Jackson M. W., Plano G. V. 1999; DsbA is required for stable expression of outer membrane protein YscC and for efficient Yop secretion in Yersinia pestis . J Bacteriol 181:5126–5130
    [Google Scholar]
  19. Kadokura H., Katzen F., Beckwith J. 2003; Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72:111–135
    [Google Scholar]
  20. Kim D. H., Yoon H. K., Koizumi M., Kobashi K. 1992; Sulfation of phenolic antibiotics by sulfotransferase obtained from a human intestinal bacterium. Chem Pharm Bull (Tokyo ) 40:1056–1057
    [Google Scholar]
  21. Kimball R. A., Martin L., Saier M. H. Jr 2003; Reversing transmembrane electron flow: the DsbD and DsbB protein families. J Mol Microbiol Biotechnol 5:133–149
    [Google Scholar]
  22. Kobashi K., Kim D. H., Morikawa T. 1987; A novel type of arylsulfotransferase. J Protein Chem 6:237–244
    [Google Scholar]
  23. Kwon A. R., Choi E. C. 2005; Role of disulfide bond of arylsulfate sulfotransferase in the catalytic activity. Arch Pharm Res 28:561–565
    [Google Scholar]
  24. Kwon A. R., Yun H. J., Choi E. C. 2001; Kinetic mechanism and identification of the active site tyrosine residue in Enterobacter amnigenus arylsulfate sulfotransferase. Biochem Biophys Res Commun 285:526–529
    [Google Scholar]
  25. Lawley T. D., Chan K., Thompson L. J., Kim C. C., Govoni G. R., Monack D. M. 2006; Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2:e11
    [Google Scholar]
  26. Lin D., Rao C. V., Slauch J. M. 2008; The Salmonella SPI1 type three secretion system responds to periplasmic disulfide bond status via the flagellar apparatus and the RcsCDB system. J Bacteriol 190:87–97
    [Google Scholar]
  27. Lloyd A. L., Rasko D. A., Mobley H. L. 2007; Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli . J Bacteriol 189:3532–3546
    [Google Scholar]
  28. Majdalani N., Gottesman S. 2005; The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59:379–405
    [Google Scholar]
  29. Malojcić G., Owen R. L., Grimshaw J. P., Brozzo M. S., Dreher-Teo H., Glockshuber R. 2008; A structural and biochemical basis for PAPS-independent sulfuryl transfer by aryl sulfotransferase from uropathogenic Escherichia coli . Proc Natl Acad Sci U S A 105:19217–19222
    [Google Scholar]
  30. Maloy S. R., Stewart V. J., Taylor R. K. 1996 Genetic Analysis of Pathogenic Bacteria: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Mann B. A., Slauch J. M. 1997; Transduction of low-copy number plasmids by bacteriophage P22. Genetics 146:447–456
    [Google Scholar]
  32. McClelland M., Sanderson K. E., Spieth J., Clifton S. W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M. other authors 2001; Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856
    [Google Scholar]
  33. Miki T., Okada N., Danbara H. 2004; Two periplasmic disulfide oxidoreductases, DsbA and SrgA, target outer membrane protein SpiA, a component of the Salmonella pathogenicity island 2 type III secretion system. J Biol Chem 279:34631–34642
    [Google Scholar]
  34. Neidhardt F. C., Bloch P. L., Smith D. F. 1974; Culture medium for enterobacteria. J Bacteriol 119:736–747
    [Google Scholar]
  35. Peek J. A., Taylor R. K. 1992; Characterization of a periplasmic thiol : disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc Natl Acad Sci U S A 89:6210–6214
    [Google Scholar]
  36. Raczko A. M., Bujnicki J. M., Pawlowski M., Godlewska R., Lewandowska M., Jagusztyn-Krynicka E. K. 2005; Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria. Microbiology 151:219–231
    [Google Scholar]
  37. Silhavy T. J., Berman M. L., Enquist L. W. 1984 Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Slauch J. M., Silhavy T. J. 1991; cis-acting ompF mutations that result in OmpR-dependent constitutive expression. J Bacteriol 173:4039–4048
    [Google Scholar]
  39. Snyder J. A., Haugen B. J., Buckles E. L., Lockatell C. V., Johnson D. E., Donnenberg M. S., Welch R. A., Mobley H. L. 2004; Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72:6373–6381
    [Google Scholar]
  40. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  41. Vernikos G. S., Thomson N. R., Parkhill J. 2007; Genetic flux over time in the Salmonella lineage. Genome Biol 8:R100
    [Google Scholar]
  42. Walters M., Sperandio V. 2006; Quorum sensing in Escherichia coli and Salmonella . Int J Med Microbiol 296:125–131
    [Google Scholar]
  43. Wang R. F., Kushner S. R. 1991; Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli . Gene 100:195–199
    [Google Scholar]
  44. Watarai M., Tobe T., Yoshikawa M., Sasakawa C. 1995; Disulfide oxidoreductase activity of Shigella flexneri is required for release of Ipa proteins and invasion of epithelial cells. Proc Natl Acad Sci U S A 92:4927–4931
    [Google Scholar]
  45. Wilgenbusch J. C., Swofford D. 2003; Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics Chapter 6, Unit 6.4
    [Google Scholar]
  46. Yu D., Ellis H. M., Lee E. C., Jenkins N. A., Copeland N. G., Court D. L. 2000; An efficient recombination system for chromosome engineering in Escherichia coli . Proc Natl Acad Sci U S A 97:5978–5983
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032904-0
Loading
/content/journal/micro/10.1099/mic.0.032904-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error