1887

Abstract

The establishment of bacterial biofilms on surfaces is a complex process that requires various factors for each consecutive developmental step. Here we report the screening of the comprehensive Harvard PA14 mutant library for mutants exhibiting an altered biofilm phenotype. We analysed the capability of all mutants to form biofilms at the bottom of a 96-well plate by the use of an automated confocal laser-scanning microscope and found 394 and 285 genetic determinants of reduced and enhanced biofilm production, respectively. Overall, 67 % of the identified mutants were affected within genes encoding hypothetical proteins, indicating that novel developmental pathways are likely to be dissected in the future. Nevertheless, a common theme that emerged from the analysis of the genes with a predicted function is that the establishment of a biofilm requires regulatory components that are involved in survival under microaerophilic growth conditions, arginine metabolism, alkyl-quinolone signalling, pH homeostasis and the DNA repair system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033290-0
2010-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/431.html?itemId=/content/journal/micro/10.1099/mic.0.033290-0&mimeType=html&fmt=ahah

References

  1. Aendekerk S., Diggle S. P., Song Z., Hoiby N., Cornelis P., Williams P., Camara M. 2005; The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151:1113–1125
    [Google Scholar]
  2. Allesen-Holm M., Barken K. B., Yang L., Klausen M., Webb J. S., Kjelleberg S., Molin S., Givskov M., Tolker-Nielsen T. 2006; A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128
    [Google Scholar]
  3. Alvarez-Ortega C., Harwood C. S. 2007; Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 65:153–165
    [Google Scholar]
  4. Beenken K. E., Dunman P. M., McAleese F., Macapagal D., Murphy E., Projan S. J., Blevins J. S., Schmeltzer M. S. 2004; Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186:4665–4684
    [Google Scholar]
  5. Beloin C., Ghigo J. M. 2005; Finding gene-expression patterns in bacterial biofilms. Trends Microbiol 13:16–19
    [Google Scholar]
  6. Boles B. R., Singh P. K. 2008; Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci U S A 105:12503–12508
    [Google Scholar]
  7. Boles B. R., Thoendel M., Singh P. K. 2004; Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A 101:16630–16635
    [Google Scholar]
  8. Bredenbruch F., Nimtz M., Wray V., Morr M., Müller R., Häussler S. 2005; Biosynthetic pathway of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines. J Bacteriol 187:3630–3635
    [Google Scholar]
  9. Caiazza N. C., O'Toole G. A. 2004; SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J Bacteriol 186:4476–4485
    [Google Scholar]
  10. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745
    [Google Scholar]
  11. Davies D. G., Geesey G. G. 1995; Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61:860–867
    [Google Scholar]
  12. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298
    [Google Scholar]
  13. Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Camara M., Williams P. 2003; The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43
    [Google Scholar]
  14. Dötsch A., Becker T., Pommerenke C., Magnowska Z., Jänsch L., Häussler S. 2009; Genomewide identification of genetic determinants of antimicrobial drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:2522–2531
    [Google Scholar]
  15. Enos-Berlage J. L., Guvener Z. T., Keenan C. E., McCarter L. L. 2005; Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 55:1160–1182
    [Google Scholar]
  16. Espinosa-Urgel M., Salido A., Ramos J. L. 2000; Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182:2363–2369
    [Google Scholar]
  17. Friedman L., Kolter R. 2004a; Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690
    [Google Scholar]
  18. Friedman L., Kolter R. 2004b; Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465
    [Google Scholar]
  19. Gaines J. M., Carty N. L., Tiburzi F., Davinic M., Visca P., Colmer-Hamood J. A., Hamood A. N. 2007; Regulation of the Pseudomonas aeruginosa toxA, regA and ptxR genes by the iron-starvation sigma factor PvdS under reduced levels of oxygen. Microbiology 153:4219–4233
    [Google Scholar]
  20. Gilbert P., McBain A. J. 2001; Biofilms: their impact on health and their recalcitrance toward biocides. Am J Infect Control 29:252–255
    [Google Scholar]
  21. Gilbert P., Maira-Litran T., McBain A. J., Rickard A. H., Whyte F. W. 2002; The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:202–256
    [Google Scholar]
  22. Heilmann C., Gerke C., Perdreau-Remington F., Gotz F. 1996; Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 64:277–282
    [Google Scholar]
  23. Hindré T., Brüggemann H., Buchrieser C., Héchard Y. 2008; Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology 154:30–41
    [Google Scholar]
  24. Inagaki S., Matsumoto-Nakano M., Fujita K., Nagayama K., Funao J., Ooshima T. 2009; Effects of recombinase A deficiency on biofilm formation by Streptococcus mutans. Oral Microbiol Immunol 24:104–108
    [Google Scholar]
  25. Jenal U., Malone J. 2006; Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407
    [Google Scholar]
  26. Jensen V., Löns D., Zaoui C., Bredenbruch F., Meissner A., Dieterich G., Münch R., Häussler S. 2006; RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 188:8601–8606
    [Google Scholar]
  27. Kirisits M. J., Parsek M. R. 2006; Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities?. Cell Microbiol 8:1841–1849
    [Google Scholar]
  28. Klausen M., Heydorn A., Ragas P., Lambertsen L., Aaes-Jorgensen A., Molin S., Tolker-Nielsen T. 2003; Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524
    [Google Scholar]
  29. Kuchma S. L., O'Toole G. A. 2000; Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol 11:429–433
    [Google Scholar]
  30. Kukavica-Ibrulj I., Bragonzi A., Paroni M., Winstanley C., Sanschagrin F., O'Toole G. A., Levesque R. C. 2008; In vivo growth of Pseudomonas aeruginosa strains PAO1 and PA14 and the hypervirulent strain LESB58 in a rat model of chronic lung infection. J Bacteriol 190:2804–2813
    [Google Scholar]
  31. Kulasakara H., Lee V., Brencic A., Liberati N., Urbach J., Miyata S., Lee D. G., Neely A. N., Hyodo M. other authors 2006; Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103:2839–2844
    [Google Scholar]
  32. Landry R. M., An D., Hupp J. T., Singh P. K., Parsek M. R. 2006; Mucin– Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol 59:142–151
    [Google Scholar]
  33. Lazazzera B. A. 2005; Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr Opin Microbiol 8:222–227
    [Google Scholar]
  34. Li Y. H., Chen Y. Y., Burne R. A. 2000; Regulation of urease gene expression by Streptococcus salivarius growing in biofilms. Environ Microbiol 2:169–177
    [Google Scholar]
  35. Liberati N. T., Urbach J. M., Miyata S., Lee D. G., Drenkard E., Wu G., Villanueva J., Wei T., Ausubel F. M. 2006; An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103:2833–2838
    [Google Scholar]
  36. Loo C. Y., Corliss D. A., Ganeshkumar N. 2000; Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182:1374–1382
    [Google Scholar]
  37. Lu C. D., Yang Z., Li W. 2004; Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa. J Bacteriol 186:3855–3861
    [Google Scholar]
  38. Ma L., Jackson K. D., Landry R. M., Parsek M. R., Wozniak D. J. 2006; Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 188:8213–8221
    [Google Scholar]
  39. Matsukawa M., Greenberg E. P. 2004; Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186:4449–4456
    [Google Scholar]
  40. Merod R. T., Warren J. E., McCaslin H., Wuertz S. 2007; Toward automated analysis of biofilm architecture: bias caused by extraneous confocal laser scanning microscopy images. Appl Environ Microbiol 73:4922–4930
    [Google Scholar]
  41. Mueller L. N., de Brouwer J. F., Almeida J. S., Stal L. J., Xavier J. B. 2006; Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC Ecol 6:1
    [Google Scholar]
  42. Nishijyo T., Haas D., Itoh Y. 2001; The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol 40:917–931
    [Google Scholar]
  43. O'Toole G. A., Kolter R. 1998a; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304
    [Google Scholar]
  44. O'Toole G. A., Kolter R. 1998b; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461
    [Google Scholar]
  45. O'Toole G. A., Gibbs K. A., Hager P. W., Phibbs P. V. Jr, Kolter R. 2000; The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182:425–431
    [Google Scholar]
  46. Parkins M. D., Ceri H., Storey D. G. 2001; Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40:1215–1226
    [Google Scholar]
  47. Patriquin G. M., Banin E., Gilmour C., Tuchman R., Greenberg E. P., Poole K. 2008; Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 190:662–671
    [Google Scholar]
  48. Platt M. D., Schurr M. J., Sauer K., Vazquez G., Kukavica-Ibrulj I., Potvin E., Levesque R. C., Fedynak A., Brinkmann F. S. other authors 2008; Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions. J Bacteriol 190:2739–2758
    [Google Scholar]
  49. Pratt L. A., Kolter R. 1998; Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293
    [Google Scholar]
  50. Recht J., Kolter R. 2001; Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol 183:5718–5724
    [Google Scholar]
  51. Rice S. A., Tan C. H., Mikkelsen P. J., Kung V., Woo J., Tay M., Hauser A., McDougald D., Webb J. S., Kjelleberg S. 2009; The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3:271–282
    [Google Scholar]
  52. Römling U., Amikam D. 2006; Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9:218–228
    [Google Scholar]
  53. Schembri M. A., Kjaergaard K., Klemm P. 2003; Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267
    [Google Scholar]
  54. Schuster M., Hawkins A. C., Harwood C. S., Greenberg E. P. 2004; The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973–985
    [Google Scholar]
  55. Shrout J. D., Chopp D. L., Just C. L., Hentzer M., Givskov M., Parsek M. R. 2006; The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62:1264–1277
    [Google Scholar]
  56. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P. 2000; Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764
    [Google Scholar]
  57. Southey-Pillig C. J., Davies D. G., Sauer K. 2005; Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol 187:8114–8126
    [Google Scholar]
  58. Sriramulu D. D., Nimtz M., Romling U. 2005; Proteome analysis reveals adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung environment. Proteomics 5:3712–3721
    [Google Scholar]
  59. Tümmler B., Bosshammer J., Breitenstein S., Brockhausen I., Gudowius P., Herrmann C., Hermann S., Heuer T., Kubesch P. other authors 1997; Infections with Pseudomonas aeruginosa in patients with cystic fibrosis. Behring Inst Mitt (98:249–255
    [Google Scholar]
  60. Tu Quoc P. H., Genevaux P., Pajunen M., Savilahti H., Georgopoulos C., Schrenzel J., Kelley W. L. 2007; Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect Immun 75:1079–1088
    [Google Scholar]
  61. Vallet I., Olson J. W., Lory S., Lazdunski A., Filloux A. 2001; The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters ( cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A 98:6911–6916
    [Google Scholar]
  62. Vijgenboom E., Busch J. E., Canters G. W. 1997; In vivo studies disprove an obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under control of rpoS and ANR. Microbiology 143:2853–2863
    [Google Scholar]
  63. Voelkner P., Puppe W., Altendorf K. 1993; Characterization of the KdpD protein, the sensor kinase of the K+-translocating Kdp system of Escherichia coli. Eur J Biochem 217:1019–1026
    [Google Scholar]
  64. Waite R. D., Papakonstantinopoulou A., Littler E., Curtis M. A. 2005; Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187:6571–6576
    [Google Scholar]
  65. Watnick P. I., Kolter R. 1999; Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595
    [Google Scholar]
  66. Whitchurch C. B., Erova T. E., Emery J. A., Sargent J. L., Harris J. M., Semmler A. B., Young M. D., Mattick J. S., Wozniak D. J. 2002a; Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. J Bacteriol 184:4544–4554
    [Google Scholar]
  67. Whitchurch C. B., Tolker-Nielsen T., Ragas P. C., Mattick J. S. 2002b; Extracellular DNA required for bacterial biofilm formation. Science 295:1487
    [Google Scholar]
  68. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P. 2001; Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864
    [Google Scholar]
  69. Yang L., Barken K. B., Skindersoe M. E., Christensen A. B., Givskov M., Tolker-Nielsen T. 2007; Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153:1318–1328
    [Google Scholar]
  70. Yoon S. S., Hennigan R. F., Hilliard G. M., Ochsner U. A., Parvatiyar K., Kamani M. C., Allen H. L., DeKievit T. R., Gardner P. R. other authors 2002; Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3:593–603
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033290-0
Loading
/content/journal/micro/10.1099/mic.0.033290-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error