1887

Abstract

Transposon mutagenesis has been applied to a hyper-invasive clinical isolate of , 01/51. A random transposon mutant library was screened in an assay of invasion and 26 mutants with a significant reduction in invasion were identified. Given that the invasion potential of is relatively poor compared to other enteric pathogens, the use of a hyper-invasive strain was advantageous as it greatly facilitated the identification of mutants with reduced invasion. The location of the transposon insertion in 23 of these mutants has been determined; all but three of the insertions are in genes also present in the genome-sequenced strain NCTC 11168. Eight of the mutants contain transposon insertions in one region of the genome (∼14 kb), which when compared with the genome of NCTC 11168 overlaps with one of the previously reported plasticity regions and is likely to be involved in genomic variation between strains. Further characterization of one of the mutants within this region has identified a gene that might be involved in adhesion to host cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033399-0
2010-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1134.html?itemId=/content/journal/micro/10.1099/mic.0.033399-0&mimeType=html&fmt=ahah

References

  1. Abuoun M., Manning G., Cawthraw S. A., Ridley A., Ahmed I. H., Wassenaar T. M., Newell D. G. 2005; Cytolethal distending toxin (CDT)-negative Campylobacter jejuni strains and anti-CDT neutralizing antibodies are induced during human infection but not during colonization in chickens. Infect Immun 73:3053–3062
    [Google Scholar]
  2. Cirillo S. L., Lum J., Cirillo J. D. 2000; Identification of novel loci involved in entry by Legionella pneumophila. Microbiology 146:1345–1359
    [Google Scholar]
  3. Colegio O. R., Griffin T. J. T., Grindley N. D., Galan J. E. 2001; In vitro transposition system for efficient generation of random mutants of Campylobacter jejuni. J Bacteriol 183:2384–2388
    [Google Scholar]
  4. De Melo M. A., Gabbiani G., Pechere J. C. 1989; Cellular events and intracellular survival of Campylobacter jejuni during infection of HEp-2 cells. Infect Immun 57:2214–2222
    [Google Scholar]
  5. Elsinghorst E. A. 1994; Measurement of invasion by gentamicin resistance. Methods Enzymol 236:405–420
    [Google Scholar]
  6. Elvers K. T., Wu G., Gilberthorpe N. J., Poole R. K., Park S. F. 2004; Role of an inducible single-domain hemoglobin in mediating resistance to nitric oxide and nitrosative stress in Campylobacter jejuni and Campylobacter coli. J Bacteriol 186:5332–5341
    [Google Scholar]
  7. Everest P. H., Goossens H., Butzler J. P., Lloyd D., Knutton S., Ketley J. M., Williams P. H. 1992; Differentiated Caco-2 cells as a model for enteric invasion by Campylobacter jejuni and C. coli. J Med Microbiol 37:319–325
    [Google Scholar]
  8. Fauchere J. L., Rosenau A., Veron M., Moyen E. N., Richard S., Pfister A. 1986; Association with HeLa cells of Campylobacter jejuni and Campylobacter coli isolated from human feces. Infect Immun 54:283–287
    [Google Scholar]
  9. Fearnley C., Bagnall M., Manning G., Javed M. A., Wassenaar T. M., Newell D. G. 2008; Identification of hyperinvasive Campylobacter jejuni strains isolated from poultry and human clinical sources. J Med Microbiol 57:570–580
    [Google Scholar]
  10. Fouts D. E., Mongodin E. F., Mandrell R. E., Miller W. G., Rasko D. A., Ravel J., Brinkac L. M., DeBoy R. T., Parker C. T. other authors 2005; Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3:e15
    [Google Scholar]
  11. Friis L. M., Pin C., Pearson B. M., Wells J. M. 2005; In vitro cell culture methods for investigating Campylobacter invasion mechanisms. J Microbiol Methods 61:145–160
    [Google Scholar]
  12. Garrity G. M., Bell J. A., Lilburn T. 2005; Class V. Epsilonproteobacteria. In Bergey's Manual of Systematic Bacteriology pp 1145 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  13. Ge B., McDermott P. F., White D. G., Meng J. 2005; Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 49:3347–3354
    [Google Scholar]
  14. Gilbert C., Slavik M. 2004; Determination of toxicity of Campylobacter jejuni isolated from humans and from poultry carcasses acquired at various stages of production. J Appl Microbiol 97:347–353
    [Google Scholar]
  15. Golden N. J., Acheson D. W. 2002; Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect Immun 70:1761–1771
    [Google Scholar]
  16. Golden N. J., Camilli A., Acheson D. W. 2000; Random transposon mutagenesis of Campylobacter jejuni. Infect Immun 68:5450–5453
    [Google Scholar]
  17. Grant A. J., Coward C., Jones M. A., Woodall C. A., Barrow P. A., Maskell D. J. 2005; Signature-tagged transposon mutagenesis studies demonstrate the dynamic nature of cecal colonization of 2-week-old chickens by Campylobacter jejuni. Appl Environ Microbiol 71:8031–8041
    [Google Scholar]
  18. Hendrixson D. R., DiRita V. J. 2004; Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52:471–484
    [Google Scholar]
  19. Hendrixson D. R., Akerley B. J., DiRita V. J. 2001; Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40:214–224
    [Google Scholar]
  20. Hickey T. E., McVeigh A. L., Scott D. A., Michielutti R. E., Bixby A., Carroll S. A., Bourgeois A. L., Guerry P. 2000; Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infect Immun 68:6535–6541
    [Google Scholar]
  21. Jin S., Joe A., Lynett J., Hani E. K., Sherman P., Chan V. L. 2001; JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol 39:1225–1236
    [Google Scholar]
  22. Kervella M., Pages J. M., Pei Z., Grollier G., Blaser M. J., Fauchere J. L. 1993; Isolation and characterization of two Campylobacter glycine-extracted proteins that bind to HeLa cell membranes. Infect Immun 61:3440–3448
    [Google Scholar]
  23. Ketley J. M. 1997; Pathogenesis of enteric infection by Campylobacter. Microbiology 143:5–12
    [Google Scholar]
  24. Klipstein F. A., Engert R. F., Short H., Schenk E. A. 1985; Pathogenic properties of Campylobacter jejuni: assay and correlation with clinical manifestations. Infect Immun 50:43–49
    [Google Scholar]
  25. Konkel M. E., Joens L. A. 1989; Adhesion to and invasion of HEp-2 cells by Campylobacter spp. Infect Immun 57:2984–2990
    [Google Scholar]
  26. Konkel M. E., Garvis S. G., Tipton S. L., Anderson D. E., Cieplak W. 1997; Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol Microbiol 24:953–963
    [Google Scholar]
  27. Lacroix M. 2008; Persistent use of “false” cell lines. Int J Cancer 122:1–4
    [Google Scholar]
  28. Linton D., Allan E., Karlyshev A. V., Cronshaw A. D., Wren B. W. 2002; Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol Microbiol 43:497–508
    [Google Scholar]
  29. Lynett J. 1999 Defining the role of cipA in the pathogenesis of Campylobacter jejuni infection pp 64–101 MSc thesis Department of Laboratory Medicine and Pathobiology, University of Toronto;
  30. Malik-Kale P., Raphael B. H., Parker C. T., Joens L. A., Klena J. D., Quinones B., Keech A. M., Konkel M. E. 2007; Characterization of genetically matched isolates of Campylobacter jejuni reveals that mutations in genes involved in flagellar biosynthesis alter the organism's virulence potential. Appl Environ Microbiol 73:3123–3136
    [Google Scholar]
  31. Misawa N., Blaser M. J. 2000; Detection and characterization of autoagglutination activity by Campylobacter jejuni. Infect Immun 68:6168–6175
    [Google Scholar]
  32. Newell D. G. 2001; Animal models of Campylobacter jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models. Symp Ser Soc Appl Microbiol 30:57S–67S
    [Google Scholar]
  33. Newell D. G., McBride H., Saunders F., Dehele Y., Pearson A. D. 1985; The virulence of clinical and environmental isolates of Campylobacter jejuni. J Hyg (Lond 94:45–54
    [Google Scholar]
  34. Newton H. J., Sansom F. M., Bennett-Wood V., Hartland E. L. 2006; Identification of Legionella pneumophila-specific genes by genomic subtractive hybridization with Legionella micdadei and identification of lpnE, a gene required for efficient host cell entry. Infect Immun 74:1683–1691
    [Google Scholar]
  35. Newton H. J., Sansom F. M., Dao J., McAlister A. D., Sloan J., Cianciotto N. P., Hartland E. L. 2007; Sel1 repeat protein LpnE is a Legionella pneumophila virulence determinant that influences vacuolar trafficking. Infect Immun 75:5575–5585
    [Google Scholar]
  36. Ohara M., Wu H. C., Sankaran K., Rick P. D. 1999; Identification and characterization of a new lipoprotein, NlpI, in Escherichia coli K-12. J Bacteriol 181:4318–4325
    [Google Scholar]
  37. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T. other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668
    [Google Scholar]
  38. Pearson B. M., Pin C., Wright J., I'Anson K., Humphrey T., Wells J. M. 2003; Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett 554:224–230
    [Google Scholar]
  39. Pei Z., Blaser M. J. 1993; PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gram-negative nutrient transport systems. J Biol Chem 268:18717–18725
    [Google Scholar]
  40. Simon R., Periefer U., Puhler A. 1983; A broad host range mobilization system for in vitro genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  41. Tompkins D. S., Hudson M. J., Smith H. R., Eglin R. P., Wheeler J. G., Brett M. M., Owen R. J., Brazier J. S., Cumberland P. other authors 1999; A study of infectious intestinal disease in England: microbiological findings in cases and controls. Commun Dis Public Health 2:108–113
    [Google Scholar]
  42. van Vliet A. H., Wooldridge K. G., Ketley J. M. 1998; Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180:5291–5298
    [Google Scholar]
  43. Wassenaar T. M. 1997; Toxin production by Campylobacter spp. Clin Microbiol Rev 10:466–476
    [Google Scholar]
  44. Wassenaar T. M., Blaser M. J. 1999; Pathophysiology of Campylobacter jejuni infections of humans. Microbes Infect 1:1023–1033
    [Google Scholar]
  45. Wassenaar T. M., Bleumink-Pluym N. M., van der Zeijst B. A. 1991; Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J 10:2055–2061
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033399-0
Loading
/content/journal/micro/10.1099/mic.0.033399-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error