1887

Abstract

The effect of four sugars (glucose, galactose, lactose and fructose) on exopolysaccharide (EPS) production by subsp. CRC 002 was evaluated. More EPS was produced when CRC 002 was grown on lactose in the absence of pH control, with a production of 1080±120 mg EPS l (<0.01) after 24 h of incubation. For fructose, galactose and glucose, EPS production was similar, at 512±63, 564±165 and 616±93 mg EPS l, respectively. The proposed repeating unit composition of the EPS is 2 galactose to 3 glucose. The effect of sugar and fermentation time on expression of genes involved in sugar nucleotide production (, , , , , and ) and the priming glycosyltransferase () was quantified using real-time reverse transcription PCR. A significantly higher transcription level of (9.29-fold) and the genes involved in the Leloir pathway (, 4.10-fold; , 2.78-fold; and , 4.95-fold) during exponential growth was associated with enhanced EPS production on lactose compared to glucose. However, expression, linking glucose metabolism with the Leloir pathway, was not correlated with EPS production on different sugars. Genes coding for dTDP-rhamnose biosynthesis were also differentially expressed depending on sugar source and growth phase, although rhamnose was not present in the composition of the EPS. This precursor may be used in cell wall polysaccharide biosynthesis. These results contribute to understanding the changes in gene expression when different sugar substrates are catabolized by subsp. CRC 002.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033720-0
2010-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/653.html?itemId=/content/journal/micro/10.1099/mic.0.033720-0&mimeType=html&fmt=ahah

References

  1. Abbad Andaloussi S., Talbaoui H., Marczak R., Bonaly R. 1995; Isolation and characterization of exocellular polysaccharides produced by Bifidobacterium longum. Appl Microbiol Biotechnol 43:995–1000
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  3. Boels I. C., Ramos A., Kleerebezem M., de Vos W. M. 2001a; Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Appl Environ Microbiol 67:3033–3040
    [Google Scholar]
  4. Boels I. C., van Kranenburg R., Hugenholtz J., Kleerebezem M., de Vos W. M. 2001b; Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int Dairy J 11:723–732
    [Google Scholar]
  5. Boels I. C., Kleerebezem M., de Vos W. M. 2003a; Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis. Appl Environ Microbiol 69:1129–1135
    [Google Scholar]
  6. Boels I. C., van Kranenburg R., Kanning M. W., Chong B. F., de Vos W. M., Kleerebezem M. 2003b; Increased exopolysaccharide production in Lactococcus lactis due to increased levels of expression of the NIZO B40 eps gene cluster. Appl Environ Microbiol 69:5029–5031
    [Google Scholar]
  7. Broadbent J. R., McMahon D. J., Welker D. L., Oberg C. J., Moineau S. 2003; Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 86:407–423
    [Google Scholar]
  8. Cerning J. 1995; Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75:463–472
    [Google Scholar]
  9. Cerning J., Renard C. M. G. C., Thibault J. F., Bouillanne C., Landon M., Desmazeaud M., Topisirovic L. 1994; Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl Environ Microbiol 60:3914–3919
    [Google Scholar]
  10. Dabour N., LaPointe G. 2005; Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Appl Environ Microbiol 71:7414–7425
    [Google Scholar]
  11. Degeest B., De Vuyst L. 1999; Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium. Appl Environ Microbiol 65:2863–2870
    [Google Scholar]
  12. Degeest B., De Vuyst L. 2000; Correlation of activities of the enzymes alpha-phosphoglucomutase, UDP-galactose4-epimerase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03. Appl Environ Microbiol 66:3519–3527
    [Google Scholar]
  13. Degeest B., Vaningelgem F., De Vuyst L. 2001; Microbial physiology, fermentation kinetics, and process engineering of heteropolysaccharide production by lactic acid bacteria. Int Dairy J 11:747–757
    [Google Scholar]
  14. Delcenserie V., Lessard M. H., LaPointe G., Roy D. 2008; Genome comparison of Bifidobacterium longum strains NCC2705 and CRC-002 using suppression subtractive hybridization. FEMS Microbiol Lett 280:50–56
    [Google Scholar]
  15. De Vuyst L., Degeest B. 1999; Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177
    [Google Scholar]
  16. De Vuyst L., De Vin F., Vaningelgem F., Degeest B. 2001; Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11:687–707
    [Google Scholar]
  17. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356
    [Google Scholar]
  18. Finn R. D., Mistry J., Schuster-Böckler B., Griffiths-Jones S., Hollich V., Lassmann T., Moxon S., Marshall M., Khanna A. other authors 2006; Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251
    [Google Scholar]
  19. Grand M., Küffer M., Baumgartner A. 2003; Quantitative analysis and molecular identification of bifidobacteria strains in probiotic milk products. Eur Food Res Technol 217:90–92
    [Google Scholar]
  20. Hsieh Y. C., Liang S. M., Tsai W. L., Chen Y. H., Liu T. Y., Liang C. M. 2003; Study of capsular polysaccharide from Vibrio parahaemolyticus. Infect Immun 71:3329–3336
    [Google Scholar]
  21. Hung D. T., Zhu J., Sturtevant D., Mekalanos J. J. 2006; Bile acids stimulate biofilm formation in Vibrio cholerae. Mol Microbiol 59:193–201
    [Google Scholar]
  22. Jolly L., Stingele F. 2001; Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int Dairy J 11:733–745
    [Google Scholar]
  23. Kohno M., Suzuki S., Kanaya T., Yoshino T., Matsuura Y., Asada M., Kitamura S. 2009; Structural characterization of the extracellular polysaccharide produced by Bifidobacterium longum JBL05. Carbohydr Polym 77:351–357
    [Google Scholar]
  24. Laws A. P., Marshall V. M. 2001; The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria. Int Dairy J 11:709–721
    [Google Scholar]
  25. Leahy S. C., Higgins D. G., Fitzgerald G. F., van Sinderen D. 2005; Getting better with bifidobacteria. J Appl Microbiol 98:1303–1315
    [Google Scholar]
  26. Levander F., Rådström P. 2001; Requirement for phosphoglucomutase in exopolysaccharide biosynthesis in glucose- and lactose-utilizing Streptococcus thermophilus. Appl Environ Microbiol 67:2734–2738
    [Google Scholar]
  27. Levander F., Svensson M., Rådström P. 2002; Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus. Appl Environ Microbiol 68:784–790
    [Google Scholar]
  28. Looijesteijn P. J., Boels I. C., Kleerebezem M., Hugenholtz J. 1999; Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl Environ Microbiol 65:5003–5008
    [Google Scholar]
  29. Marshall V. M., Laws A. P., Gu Y., Levander F., Rådström P., De Vuyst L., Degeest B., Vaningelgem F., Dunn H. other authors 2001; Exopolysaccharide-producing strains of thermophilic lactic acid bacteria cluster into groups according to their EPS structure. Lett Appl Microbiol 32:433–437
    [Google Scholar]
  30. Masco L., Vanhoutte T., Temmerman R., Swings J., Huys G. 2007; Evaluation of real-time PCR targeting the16S rRNA and recA genes for the enumeration of bifidobacteria in probiotic products. Int J Food Microbiol 113:351–357
    [Google Scholar]
  31. Mazmanian S. K., Kasper D. L. 2006; The love-hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol 6:849–858
    [Google Scholar]
  32. Nagaoka M., Shibata H., Kimura I., Hashimoto S., Kimura K., Sawada H., Yokokura T. 1995; Structural studies on a cell wall polysaccharide from Bifidobacterium longum YIT4028. Carbohydr Res 274:245–249
    [Google Scholar]
  33. Norris R. F., Flanders T., Tomarelli R. M., György P. 1950; The isolation and cultivation of Lactobacillus bifidus; a comparison of branched and unbranched strains. J Bacteriol 60:681–696
    [Google Scholar]
  34. Palframan R. J., Gibson G. R., Rastall R. A. 2003; Carbohydrate preferences of Bifidobacterium species isolated from the human gut. Curr Issues Intest Microbiol 4:71–75
    [Google Scholar]
  35. Parche S., Beleut M., Rezzonico E., Jacobs D., Arigoni F., Titgemeyer F., Jankovic I. 2006; Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression. J Bacteriol 188:1260–1265
    [Google Scholar]
  36. Parche S., Amon J., Jankovic I., Rezzonico E., Beleut M., Barutçu H., Schendel I., Eddy M. P., Burkovski A. other authors 2007; Sugar transport systems of Bifidobacterium longum NCC2705. J Mol Microbiol Biotechnol 12:9–19
    [Google Scholar]
  37. Peirson S. N., Butler J. N., Foster R. G. 2003; Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73
    [Google Scholar]
  38. Pfaffl M. W. 2001; A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45
    [Google Scholar]
  39. Pfaffl M. W., Horgan G. W., Dempfle L. 2002; Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36
    [Google Scholar]
  40. Picard C., Fioramonti J., Francois A., Robinson T., Neant F., Matuchansky C. 2005; Review article: bifidobacteria as probiotic agents – physiological effects and clinical benefits. Aliment Pharmacol Ther 22:495–512
    [Google Scholar]
  41. Poupard J. A., Husain I., Norris R. F. 1973; Biology of the bifidobacteria. Bacteriol Rev 37:136–165
    [Google Scholar]
  42. Provencher C., LaPointe G., Sirois S., Van Calsteren M. R., Roy D. 2003; Consensus-degenerate hybrid oligonucleotide primers for amplification of priming glycosyltransferase genes of the exopolysaccharide locus in strains of the Lactobacillus casei group. Appl Environ Microbiol 69:3299–3307
    [Google Scholar]
  43. Roberts C. M., Fett W. F., Osman S. F., Wijey C., O'Connor J. V., Hoover D. G. 1995; Exopolysaccharide production by Bifidobacterium longum BB-79. J Appl Bacteriol 78:463–468
    [Google Scholar]
  44. Roy D. 2005; Technological aspects related to the use of bifidobacteria in dairy products. Lait 85:39–56
    [Google Scholar]
  45. Roy D., Chevalier P., Ward P., Savoie L. 1991; Sugars fermented by Bifidobacterium infantis ATCC27920 in relation to growth and α-galactosidase activity. Appl Microbiol Biotechnol 34:653–655
    [Google Scholar]
  46. Ruas-Madiedo P., de los Reyes-Gavilán C. G. 2005; Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 88:843–856
    [Google Scholar]
  47. Ruas-Madiedo P., Gueimonde M., Margolles A., de los Reyes-Gavilán C. G., Salminen S. 2006; Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot 69:2011–2015
    [Google Scholar]
  48. Ruas-Madiedo P., Moreno J. A., Salazar N., Delgado S., Mayo B., Margolles A., de los Reyes-Gavilán C. G. 2007; Screening of exopolysaccharide-producing Lactobacillus and Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol 73:4385–4388
    [Google Scholar]
  49. Ruas-Madiedo P., Gueimonde M., Arigoni F., de los Reyes-Gavilán C. G., Margolles A. 2009; Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis. Appl Environ Microbiol 75:1204–1207
    [Google Scholar]
  50. Salazar N., Gueimonde M., Hernandez-Barranco A. M., Ruas-Madiedo P., de los Reyes-Gavilán C. G. 2008; Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl Environ Microbiol 74:4737–4745
    [Google Scholar]
  51. Salazar N., Prieto A., Leal J. A., Mayo B., Bada-Gancedo J. C., de los Reyes-Gavilán C. G., Ruas-Madiedo P. 2009; Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. J Dairy Sci 92:4158–4168
    [Google Scholar]
  52. Schell M. A., Karmirantzou M., Snel B., Vilanova D., Berger B., Pessi G., Zwahlen M. C., Desiere F., Bork P. other authors 2002; The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99:14422–14427
    [Google Scholar]
  53. Stanton C., Gardiner G., Lynch P. B., Collins J. K., Fitzgerald G., Ross R. P. 1998; Probiotic cheese. Int Dairy J 8:491–496
    [Google Scholar]
  54. Svensson M., Waak E., Svensson U., Rådström P. 2005; Metabolically improved exopolysaccharide production by Streptococcus thermophilus and its influence on the rheological properties of fermented milk. Appl Environ Microbiol 71:6398–6400
    [Google Scholar]
  55. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  56. Van Calsteren M. R., Pau-Roblot C., Bégin A., Roy D. 2002; Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R. Biochem J 363:7–17
    [Google Scholar]
  57. van Kranenburg R., Boels I. C., Kleerebezem M., de Vos W. M. 1999; Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Curr Opin Biotechnol 10:498–504
    [Google Scholar]
  58. Vincent D., Roy D., Mondou F., Déry C. 1998; Characterization of bifidobacteria by random DNA amplification. Int J Food Microbiol 43:185–193
    [Google Scholar]
  59. Welman A. D., Maddox I. S., Archer R. H. 2006; Metabolism associated with raised metabolic flux to sugar nucleotide precursors of exopolysaccharides in Lactobacillus delbrueckii subsp. bulgaricus. J Ind Microbiol Biotechnol 33:391–400
    [Google Scholar]
  60. Whitfield C. 2006; Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033720-0
Loading
/content/journal/micro/10.1099/mic.0.033720-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error