1887

Abstract

, like several other Gram-negative bacteria, possesses two functional haem uptake systems. The first, referred to as the Hem system, can transport haem present at a concentration equal to or above 10 M. It requires an active outer-membrane receptor which uses proton-motive force energy transmitted by the inner-membrane TonB protein. The other system, Has, takes up haem at lower concentrations and utilizes a small secreted haem-binding protein (haemophore) and its cognate TonB-dependent outer-membrane receptor HasR. Various combinations of mutations were used to examine haem uptake activity by the two systems in . The Hem uptake system enables to take up haem at a concentration of 10 M in the presence of various levels of iron depletion. The Has system, which enables such uptake even in the presence of lower haem concentrations, requires higher iron depletion conditions for function. Has haem uptake requires the presence of HasB, a TonB paralogue encoded by the operon. These two systems enable to take up haem under various conditions from different sources, reflecting its capacity to confront conditions encountered in natural biotopes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034405-0
2010-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1749.html?itemId=/content/journal/micro/10.1099/mic.0.034405-0&mimeType=html&fmt=ahah

References

  1. Angerer A., Klupp B., Braun V. 1992; Iron transport systems of Serratia marcescens. J Bacteriol 174:1378–1387
    [Google Scholar]
  2. Benevides-Matos N., Wandersman C., Biville F. 2008; HasB, the Serratia marcescens TonB paralog, is specific to HasR. J Bacteriol 190:21–27
    [Google Scholar]
  3. Carter R. A., Yeoman K. H., Klein A., Hosie A. H., Sawers G., Poole P. S., Johnston A. W. 2002; dpp genes of Rhizobium leguminosarum specify uptake of δ-aminolevulinic acid. Mol Plant Microbe Interact 15:69–74
    [Google Scholar]
  4. Chaveroche M. K., Ghigo J. M., d'Enfert C. 2000; A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res 28:E97
    [Google Scholar]
  5. Cope L. D., Hrkal Z., Hansen E. J. 2000; Detection of phase variation in expression of proteins involved in haemoglobin and haemoglobin–haptoglobin binding by nontypeable Haemophilus influenzae. Infect Immun 68:4092–4101
    [Google Scholar]
  6. Cwerman H., Wandersman C., Biville F. 2006; Heme and a five-amino-acid hemophore region form the bipartite stimulus triggering the has signaling cascade. J Bacteriol 188:3357–3364
    [Google Scholar]
  7. Davidson A. L., Dassa E., Orelle C., Chen J. 2008; Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364
    [Google Scholar]
  8. Dower W. J., Miller J. F., Radgale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145
    [Google Scholar]
  9. Fischer E., Gunter K., Braun V. 1989; Involvement of ExbB and TonB in transport across the outer membrane of Escherichia coli: phenotypic complementation of exb mutants by overexpressed tonB and physical stabilization of TonB by ExbB. J Bacteriol 171:5127–5134
    [Google Scholar]
  10. Ghigo J. M., Letoffe S., Wandersman C. 1997; A new type of hemophore-dependent heme acquisition system of Serratia marcescens reconstituted in Escherichia coli. J Bacteriol 179:3572–3579
    [Google Scholar]
  11. Izadi N., Henry Y., Haladjian J., Goldberg M. E., Wandersman C., Delepierre M., Lecroisey A. 1997; Purification and characterization of an extracellular haem-binding protein, HasA, involved in haem iron acquisition. Biochemistry 36:7050–7057
    [Google Scholar]
  12. Lefevre J., Delepelaire P., Delepierre M., Izadi-Pruneyre N. 2008; Modulation by substrates of the interaction between the HasR outer membrane receptor and its specific TonB-like protein. HasB. J Mol Biol 378:840–851
    [Google Scholar]
  13. Letoffe S., Ghigo J. M., Wandersman C. 1994; Iron acquisition from haem and haemoglobin by a Serratia marcescens extracellular protein. Proc Natl Acad Sci U S A 91:9876–9880
    [Google Scholar]
  14. Letoffe S., Nato F., Goldberg M. E., Wandersman C. 1999; Interactions of HasA, a bacterial haemophore, with haemoglobin and with its outer membrane receptor HasR. Mol Microbiol 33:546–555
    [Google Scholar]
  15. Letoffe S., Delepelaire P., Wandersman C. 2004; Free and hemophore-bound heme acquisitions through the outer membrane receptor HasR have different requirements for the TonB–ExbB–ExbD complex. J Bacteriol 186:4067–4074
    [Google Scholar]
  16. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  17. Morton D. J., Smith A., Ren Z., Madore L. L., VanWagoner T. M., Seale T. W., Whitby P. W., Stull T. L. 2004; Identification of a haem-utilization protein (Hup) in Haemophilus influenzae. Microbiology 150:3923–3933
    [Google Scholar]
  18. Morton D. J., Seale T. W., Madore L. L., VanWagoner T. M., Whitby P. W., Stull T. L. 2007; The haem–haemopexin utilization gene cluster ( hxuCBA) as a virulence factor of Haemophilus influenzae. Microbiology 153:215–224
    [Google Scholar]
  19. Ochsner U. A., Johnson Z., Vasil M. L. 2000; Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146:185–198
    [Google Scholar]
  20. Paquelin A., Ghigo J. M., Bertin S., Wandersman C. 2001; Characterization of HasB, a Serratia marcescens TonB-like protein specifically involved in the haemophore-dependent haem acquisition system. Mol Microbiol 42:995–1005
    [Google Scholar]
  21. Pardee A. B., Jacob F., Monod J. 1959; The genetic control and cytoplasmic expression of inducibility in the synthesis of β-galactosidase of Escherichia coli. J Mol Biol 1:165–178
    [Google Scholar]
  22. Perkins-Balding D., Baer M. T., Stojiljkovic I. 2003; Identification of functionally important regions of a haemoglobin receptor from Neisseria meningitidis. Microbiology 149:3423–3435
    [Google Scholar]
  23. Perkins-Balding D., Ratliff-Griffin M., Stojiljkovic I. 2004; Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 68:154–171
    [Google Scholar]
  24. Rossi M. S., Fetherston J. D., Letoffe S., Carniel E., Perry R. D., Ghigo J. M. 2001; Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis. Infect Immun 69:6707–6717
    [Google Scholar]
  25. Rossi M. S., Paquelin A., Ghigo J. M., Wandersman C. 2003; Haemophore-mediated signal transduction across the bacterial cell envelope in Serratia marcescens: the inducer and the transported substrate are different molecules. Mol Microbiol 48:1467–1480
    [Google Scholar]
  26. Wandersman C., Delepelaire P. 2004; Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647
    [Google Scholar]
  27. Wandersman C., Stojiljkovic I. 2000; Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol 3:215–220
    [Google Scholar]
  28. Worst D. J., Maaskant J., Vandenbroucke-Grauls C. M., Kusters J. G. 1999; Multiple haem-utilization loci in Helicobacter pylori. Microbiology 145:681–688
    [Google Scholar]
  29. Wyckoff E. E., Schmitt M., Wilks A., Payne S. M. 2004; HutZ is required for efficient haem utilization in Vibrio cholerae. J Bacteriol 186:4142–4151
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034405-0
Loading
/content/journal/micro/10.1099/mic.0.034405-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error