1887

Abstract

is a food-borne pathogen and a frequent contaminant of food production plants. The persistence of this pathogen in various environments results from the formation of spores and of biofilms. To investigate the role of the flagellar apparatus in biofilm formation, we constructed a non-flagellated mutant and a flagellated but non-motile mutant. Unexpectedly, we found that the presence of flagella decreased the adhesion of the bacterium to glass surfaces. We hypothesize that this decrease is a consequence of the flagella hindering a direct interaction between the bacterial cell wall and the surface. In contrast, in specific conditions, motility promotes biofilm formation. Our results suggest that motility could influence biofilm formation by three mechanisms. Motility is necessary for the bacteria to reach surfaces suitable for biofilm formation. In static conditions, reaching the air–liquid interface, where the biofilm forms, is a strong requirement, whereas in flow cells bacteria can have access to the bottom glass slide by sedimentation. Therefore, motility is important for biofilm formation in glass tubes and in microtitre plates, but not in flow cells. Motility also promotes recruitment of planktonic cells within the biofilm by allowing motile bacteria to invade the whole biofilm. Finally, motility is involved in the spreading of the biofilm on glass surfaces.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034827-0
2010-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1009.html?itemId=/content/journal/micro/10.1099/mic.0.034827-0&mimeType=html&fmt=ahah

References

  1. Agaisse H., Lereclus D. 1994; Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant. J Bacteriol 176:4734–4741
    [Google Scholar]
  2. Auger S., Krin E., Aymerich S., Gohar M. 2006; Autoinducer 2 affects biofilm formation by Bacillus cereus. Appl Environ Microbiol 72:937–941
    [Google Scholar]
  3. Auger S., Ramarao N., Faille C., Fouet A., Aymerich S., Gohar M. 2009; Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl Environ Microbiol 75:6616–6618
    [Google Scholar]
  4. Barken K. B., Pamp S. J., Yang L., Gjermansen M., Bertrand J. J., Klausen M., Givskov M., Whitchurch C. B., Engel J. N., Tolker-Nielsen T. 2008; Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10:2331–2343
    [Google Scholar]
  5. Bouillaut L., Ramarao N., Buisson C., Gilois N., Gohar M., Lereclus D., Nielsen-Leroux C. 2005; FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence. Appl Environ Microbiol 71:8903–8910
    [Google Scholar]
  6. Branda S. S., Gonzalez-Pastor J. E., Ben Yehuda S., Losick R., Kolter R. 2001; Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A 98:11621–11626
    [Google Scholar]
  7. Budzik J. M., Marraffini L. A., Schneewind O. 2007; Assembly of pili on the surface of Bacillus cereus vegetative cells. Mol Microbiol 66:495–510
    [Google Scholar]
  8. Chai Y., Chu F., Kolter R., Losick R. 2008; Bistability and biofilm formation in Bacillus subtilis. Mol Microbiol 67:254–263
    [Google Scholar]
  9. Chevance F. F., Hughes K. T. 2008; Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6:455–465
    [Google Scholar]
  10. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745
    [Google Scholar]
  11. Daou N., Buisson C., Gohar M., Vidic J., Bierne H., Kallassy M., Lereclus D., Nielsen-LeRoux C. 2009; IlsA, a unique surface protein of Bacillus cereus required for iron acquisition from heme, hemoglobin and ferritin. PLoS Pathog 5:e1000675
    [Google Scholar]
  12. Fujita M., Losick R. 2005; Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev 19:2236–2244
    [Google Scholar]
  13. Gohar M., Okstad O. A., Gilois N., Sanchis V., Kolstø A. B., Lereclus D. 2002; Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2:784–791
    [Google Scholar]
  14. Gohar M., Gilois N., Graveline R., Garreau C., Sanchis V., Lereclus D. 2005; A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5:3696–3711
    [Google Scholar]
  15. Gohar M., Faegri K., Perchat S., Ravnum S., Okstad O. A., Gominet M., Kolsto A. B., Lereclus D. 2008; The PlcR virulence regulon of Bacillus cereus. PLoS One 3:e2793
    [Google Scholar]
  16. Guerout-Fleury A. M., Shazand K., Frandsen N., Stragier P. 1995; Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167:335–336
    [Google Scholar]
  17. Guinebretiere M. H., Girardin H., Dargaignaratz C., Carlin F., Nguyen-The C. 2003; Contamination flows of Bacillus cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini puree processing line. Int J Food Microbiol 82:223–232
    [Google Scholar]
  18. Hamon M. A., Lazazzera B. A. 2001; The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42:1199–1210
    [Google Scholar]
  19. Hamon M. A., Stanley N. R., Britton R. A., Grossman A. D., Lazazzera B. A. 2004; Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 52:847–860
    [Google Scholar]
  20. Helgason E., Caugant D. A., Olsen I., Kolsto A. B. 2000; Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J Clin Microbiol 38:1615–1622
    [Google Scholar]
  21. Ito M., Terahara N., Fujinami S., Krulwich T. A. 2005; Properties of motility in Bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J Mol Biol 352:396–408
    [Google Scholar]
  22. Jackson D. W., Suzuki K., Oakford L., Simecka J. W., Hart M. E., Romeo T. 2002; Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184:290–301
    [Google Scholar]
  23. Jarrell K. F., McBride M. J. 2008; The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6:466–476
    [Google Scholar]
  24. Kearns D. B., Chu F., Branda S. S., Kolter R., Losick R. 2005; A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749
    [Google Scholar]
  25. Kirov S. M., Castrisios M., Shaw J. G. 2004; Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect Immun 72:1939–1945
    [Google Scholar]
  26. Kobayashi K. 2007a; Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol Microbiol 66:395–409
    [Google Scholar]
  27. Kobayashi K. 2007b; Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J Bacteriol 189:4920–4931
    [Google Scholar]
  28. Kobayashi K. 2008; SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis. Mol Microbiol 69:1399–1410
    [Google Scholar]
  29. Kotiranta A., Lounatmaa K., Haapasalo M. 2000; Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189–198
    [Google Scholar]
  30. Lemon K. P., Higgins D. E., Kolter R. 2007; Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189:4418–4424
    [Google Scholar]
  31. Lereclus D., Vallade M., Chaufaux J., Arantes O., Rambaud S. 1992; Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Biotechnology (N Y) 10:418–421
    [Google Scholar]
  32. Merritt P. M., Danhorn T., Fuqua C. 2007; Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J Bacteriol 189:8005–8014
    [Google Scholar]
  33. Nadell C. D., Xavier J. B., Foster K. R. 2009; The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224
    [Google Scholar]
  34. O'Toole G., Kaplan H. B., Kolter R. 2000; Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79
    [Google Scholar]
  35. Oosthuizen M. C., Steyn B., Lindsay D., Brozel V. S., von Holy A. 2001; Novel method for the proteomic investigation of a dairy-associated Bacillus cereus biofilm. FEMS Microbiol Lett 194:47–51
    [Google Scholar]
  36. Parsek M. R., Tolker-Nielsen T. 2008; Pattern formation in Pseudomonas aeruginosa biofilms. Curr Opin Microbiol 11:560–566
    [Google Scholar]
  37. Pratt L. A., Kolter R. 1998; Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293
    [Google Scholar]
  38. Ramarao N., Lereclus D. 2006; Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes Infect 8:1483–1491
    [Google Scholar]
  39. Stanley N. R., Britton R. A., Grossman A. D., Lazazzera B. A. 2003; Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951–1957
    [Google Scholar]
  40. Svensson B., Eneroth A., Brendehaug J., Molin G., Christiansson A. 2000; Involvement of a pasteurizer in the contamination of milk by Bacillus cereus in a commercial dairy plant. J Dairy Res 67:455–460
    [Google Scholar]
  41. Tourasse N. J., Helgason E., Okstad O. A., Hegna I. K., Kolsto A. B. 2006; The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol 101:579–593
    [Google Scholar]
  42. Vatanyoopaisarn S., Nazli A., Dodd C. E., Rees C. E., Waites W. M. 2000; Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel. Appl Environ Microbiol 66:860–863
    [Google Scholar]
  43. Verhamme D. T., Kiley T. B., Stanley-Wall N. R. 2007; DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol 65:554–568
    [Google Scholar]
  44. Verhamme D. T., Murray E. J., Stanley-Wall N. R. 2009; DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J Bacteriol 191:100–108
    [Google Scholar]
  45. Vlamakis H., Aguilar C., Losick R., Kolter R. 2008; Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:945–953
    [Google Scholar]
  46. Watnick P. I., Lauriano C. M., Klose K. E., Croal L., Kolter R. 2001; The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39:223–235
    [Google Scholar]
  47. West M., Burdash N. M., Freimuth F. 1977; Simplified silver-plating stain for flagella. J Clin Microbiol 6:414–419
    [Google Scholar]
  48. Wijman J. G., de Leeuw P. P., Moezelaar R., Zwietering M. H., Abee T. 2007; Air–liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl Environ Microbiol 73:1481–1488
    [Google Scholar]
  49. Wirtanen G., Husmark U., Mattila-Sandholm T. 1996; Microbial evaluation of the biotransfer potential from surfaces with Bacillus biofilms after rinsing and cleaning procedures in closed food-processing systems. J Food Prot 59:727–733
    [Google Scholar]
  50. Wood T. K., Gonzalez Barrios A. F., Herzberg M., Lee J. 2006; Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 72:361–367
    [Google Scholar]
  51. Xavier J. B., Foster K. R. 2007; Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci U S A 104:876–881
    [Google Scholar]
  52. Zhang M. Y., Lovgren A., Landen R. 1995; Adhesion and cytotoxicity of Bacillus thuringiensis to cultured Spodoptera and Drosophila cells. J Invertebr Pathol 66:46–51
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034827-0
Loading
/content/journal/micro/10.1099/mic.0.034827-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error