1887

Abstract

Autotransporters are large virulence factors secreted by Gram-negative bacteria. They are synthesized with a C-terminal domain that forms a -barrel pore in the outer membrane implicated in translocation of the upstream ‘passenger’ domain across the outer membrane. However, recent structural data suggest that the diameter of the -barrel pore is not sufficient to allow the passage of partly folded structures observed for several autotransporters. Here, we have used a stalled translocation intermediate of the autotransporter Hbp to identify components involved in insertion and translocation of the protein across the outer membrane. At this intermediate stage the -domain was not inserted and folded as an integral -barrel in the outer membrane whereas part of the passenger was surface exposed. The intermediate was copurified with the periplasmic chaperone SurA and subunits of the Bam (Omp85) complex that catalyse the insertion and assembly of outer-membrane proteins. The data suggest a critical role for this general machinery in the translocation of autotransporters across the outer membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034991-0
2009-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3982.html?itemId=/content/journal/micro/10.1099/mic.0.034991-0&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H. 2006; Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008
    [Google Scholar]
  2. Barnard T. J., Dautin N., Lukacik P., Bernstein H. D., Buchanan S. K. 2007; Autotransporter structure reveals intra-barrel cleavage followed by conformational changes. Nat Struct Mol Biol 14:1214–1220
    [Google Scholar]
  3. Behrens S., Maier R., de Cock H., Schmid F. X., Gross C. A. 2001; The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J 20:285–294
    [Google Scholar]
  4. Bernstein H. D. 2007; Are bacterial ‘autotransporters’ really transporters?. Trends Microbiol 15:441–447
    [Google Scholar]
  5. Bodelon G., Marin E., Fernandez L. A. 2009; Role of periplasmic chaperones and BamA (YaeT/Omp85) for folding and secretion of intimin from enteropathogenic Escherichia coli strains. J Bacteriol 191:5169–5179
    [Google Scholar]
  6. Bos M. P., Robert V., Tommassen J. 2007; Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol 61:191–214
    [Google Scholar]
  7. Brandon L. D., Goldberg M. B. 2001; Periplasmic transit and disulfide bond formation of the autotransported Shigella protein IcsA. J Bacteriol 183:951–958
    [Google Scholar]
  8. Charlson E. S., Werner J. N., Misra R. 2006; Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J Bacteriol 188:7186–7194
    [Google Scholar]
  9. Collin S., Guilvout I., Chami M., Pugsley A. P. 2007; YaeT-independent multimerization and outer membrane association of secretin PulD. Mol Microbiol 64:1350–1357
    [Google Scholar]
  10. Dautin N., Bernstein H. D. 2007; Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol 61:89–112
    [Google Scholar]
  11. Dautin N., Barnard T. J., Anderson D. E., Bernstein H. D. 2007; Cleavage of a bacterial autotransporter by an evolutionarily convergent autocatalytic mechanism. EMBO J 26:1942–1952
    [Google Scholar]
  12. Jacob-Dubuisson F., Villeret V., Clantin B., Delattre A., Saint N. 2009; First structural insights into the TpsB/Omp85 superfamily. Biol Chem 390:675–684
    [Google Scholar]
  13. Jain S., Goldberg M. B. 2007; Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol 189:5393–5398
    [Google Scholar]
  14. Jong W. S., ten Hagen-Jongman C. M., den Blaauwen T., Jan Slotboom D., Tame J. R., Wickström D., de Gier J. W., Otto B. R., Luirink J. 2007; Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Mol Microbiol 63:1524–1536
    [Google Scholar]
  15. Junker M., Besingi R. N., Clark P. L. 2009; Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion. Mol Microbiol 71:1323–1332
    [Google Scholar]
  16. Khalid S., Sansom M. S. 2006; Molecular dynamics simulations of a bacterial autotransporter: NalP from Neisseria meningitidis . Mol Membr Biol 23:499–508
    [Google Scholar]
  17. Meng G., Surana N. K., St Geme J. W. III, Waksman G. 2006; Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J 25:2297–2304
    [Google Scholar]
  18. Miller J. H. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Movva N. R., Nakamura K., Inouye M. 1980; Regulatory region of the gene for the OmpA protein, a major outer membrane protein of Escherichia coli . Proc Natl Acad Sci U S A 77:3845–3849
    [Google Scholar]
  20. Muller D., Benz I., Tapadar D., Buddenborg C., Greune L., Schmidt M. A. 2005; Arrangement of the translocator of the autotransporter adhesin involved in diffuse adherence on the bacterial surface. Infect Immun 73:3851–3859
    [Google Scholar]
  21. Oomen C. J., van Ulsen P., van Gelder P., Feijen M., Tommassen J., Gros P. 2004; Structure of the translocator domain of a bacterial autotransporter. EMBO J 23:1257–1266
    [Google Scholar]
  22. Otto B. R., van Dooren S. J., Dozois C. M., Luirink J., Oudega B. 2002; Escherichia coli hemoglobin protease autotransporter contributes to synergistic abscess formation and heme-dependent growth of Bacteroides fragilis . Infect Immun 70:5–10
    [Google Scholar]
  23. Otto B. R., Sijbrandi R., Luirink J., Oudega B., Heddle J. G., Mizutani K., Park S. Y., Tame J. R. 2005; Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli . J Biol Chem 280:17339–17345
    [Google Scholar]
  24. Paschen S. A., Waizenegger T., Stan T., Preuss M., Cyrklaff M., Hell K., Rapaport D., Neupert W. 2003; Evolutionary conservation of biogenesis of beta-barrel membrane proteins. Nature 426:862–866
    [Google Scholar]
  25. Purdy G. E., Fisher C. R., Payne S. M. 2007; IcsA surface presentation in Shigella flexneri requires the periplasmic chaperones DegP, Skp, and SurA. J Bacteriol 189:5566–5573
    [Google Scholar]
  26. Robert V., Volokhina E. B., Senf F., Bos M. P., Van Gelder P., Tommassen J. 2006; Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol 4:e377
    [Google Scholar]
  27. Ruiz N., Falcone B., Kahne D., Silhavy T. J. 2005; Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121:307–317
    [Google Scholar]
  28. Ruiz N., Kahne D., Silhavy T. J. 2006; Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4:57–66
    [Google Scholar]
  29. Shevchenko A., Wilm M., Vorm O., Mann M. 1996; Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858
    [Google Scholar]
  30. Silhavy T., Berman M., Enquist L. 1984 Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Skillman K. M., Barnard T. J., Peterson J. H., Ghirlando R., Bernstein H. D. 2005; Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter. Mol Microbiol 58:945–958
    [Google Scholar]
  32. Sklar J. G., Wu T., Kahne D., Silhavy T. J. 2007; Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli . Genes Dev 21:2473–2484
    [Google Scholar]
  33. Stegmeier J. F., Gluck A., Sukumaran S., Mantele W., Andersen C. 2007; Characterisation of YtfM, a second member of the Omp85 family in Escherichia coli . Biol Chem 388:37–46
    [Google Scholar]
  34. Strauch K. L., Johnson K., Beckwith J. 1989; Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol 171:2689–2696
    [Google Scholar]
  35. Surana N. K., Grass S., Hardy G. G., Li H., Thanassi D. G., Geme J. W. III 2004; Evidence for conservation of architecture and physical properties of Omp85-like proteins throughout evolution. Proc Natl Acad Sci U S A 101:14497–14502
    [Google Scholar]
  36. Szabady R. L., Peterson J. H., Skillman K. M., Bernstein H. D. 2005; An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc Natl Acad Sci U S A 102:221–226
    [Google Scholar]
  37. Ureta A. R., Endres R. G., Wingreen N. S., Silhavy T. J. 2007; Kinetic analysis of the assembly of the outer membrane protein LamB in Escherichia coli mutants each lacking a secretion or targeting factor in a different cellular compartment. J Bacteriol 189:446–454
    [Google Scholar]
  38. Voulhoux R., Bos M. P., Geurtsen J., Mols M., Tommassen J. 2003; Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–265
    [Google Scholar]
  39. Vuong P., Bennion D., Mantei J., Frost D., Misra R. 2008; Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry. J Bacteriol 190:1507–1517
    [Google Scholar]
  40. Wu T., Malinverni J., Ruiz N., Kim S., Silhavy T. J., Kahne D. 2005; Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli . Cell 121:235–245
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034991-0
Loading
/content/journal/micro/10.1099/mic.0.034991-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error