1887

Abstract

In this paper, we describe the regulatory roles of VisN, VisR and Rem in the expression of flagellar, motility and chemotaxis genes in biovar strains VF39SM and 3841. Individual mutations in the genes encoding these proteins resulted in a loss of motility and an absence of flagella, indicating that these regulatory genes are essential for flagellar synthesis and function. Transcriptional experiments involving –gene fusions in wild-type and mutant backgrounds were performed to identify the genes under VisN/R and Rem regulation. Results showed that the chemotaxis and motility genes of could be separated into two groups: one group under VisN/R-Rem regulation and another group that is independent of this regulation. VisN and VisR regulate the expression of , while Rem positively regulates the expression of , , , , , , and . All of these genes except are located within the main motility and chemotaxis gene cluster of . Other chemotaxis and motility genes, which are found outside of the main motility gene cluster ( operon, for VF39SM, and ) or are plasmid-borne ( and ), are not part of the VisN/R-Rem regulatory cascade. In addition, all genes exhibited the same regulation pattern in 3841 and in VF39SM, except and . is not regulated by VisN/R-Rem in 3841 but it is repressed by Rem in VF39SM. is under VisN/R-Rem regulation in 3841, but not in VF39SM. A kinetics experiment demonstrated that a subset of the flagellar genes is continuously expressed in all growth phases, indicating the importance of continuous motility for under free-living conditions. On the other hand, motility is repressed under symbiotic conditions. Nodulation experiments showed that the transcriptional activators VisN and Rem are dramatically downregulated in the nodules, suggesting that the symbiotic downregulation of motility-related genes could be mediated by repressing the expression of VisN/R and Rem.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035386-0
2010-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1673.html?itemId=/content/journal/micro/10.1099/mic.0.035386-0&mimeType=html&fmt=ahah

References

  1. Ames P., Bergman K. 1981; Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J Bacteriol 148:728–729
    [Google Scholar]
  2. Ames P., Schluederberg S. A., Bergman K. 1980; Behavioral mutants of Rhizobium meliloti. J Bacteriol 141:722–727
    [Google Scholar]
  3. Amsler C. D., Cho M., Matsumura P. 1993; Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J Bacteriol 175:6238–6244
    [Google Scholar]
  4. Bauer W. D., Caetano-Anollés G. 1990; Chemotaxis, induced gene expression, and competitiveness in the rhizosphere. Plant Soil 129:45–52
    [Google Scholar]
  5. Berg H. C. 2003; The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54
    [Google Scholar]
  6. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198
    [Google Scholar]
  7. Caetano-Anollés G., Wall L. G., Micheli A. T. D., Macchi E. M., Bauer W. D., Favelukes G. 1988; Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol 86:1228–1235
    [Google Scholar]
  8. Capela D., Barloy-Hubler F., Gouzy J., Bothe G., Ampe F., Batut J., Boistard P., Becker A., Boutry M. other authors 2001; Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci U S A 98:9877–9882
    [Google Scholar]
  9. Condemine G., Ghazi A. 2007; Differential regulation of two oligogalacturonate outer membrane channels, KdgN and KdgM, of Dickeya dadantii ( Erwinia chrysanthemi. J Bacteriol 189:5955–5962
    [Google Scholar]
  10. Deakin W. J., Parker V. E., Wright E. L., Ashcroft K. J., Loake G. J., Shaw C. H. 1999; Agrobacterium tumefaciens possesses a fourth flagellin gene located in a large gene cluster concerned with flagellar structure, assembly and motility. Microbiology 145:1397–1407
    [Google Scholar]
  11. Dombrecht B., Vanderleyden J., Michiels J. 2001; Stable RK2-derived cloning vectors for the analysis of gene expression and gene function in Gram-negative bacteria. Mol Plant Microbe Interact 14:426–430
    [Google Scholar]
  12. Easter C. L., Sobecky P. A., Helinski D. R. 1997; Contribution of different segments of the par region to stable maintenance of the broad-host-range plasmid RK2. J Bacteriol 179:6472–6479
    [Google Scholar]
  13. Eggenhofer E., Rachel R., Haslbeck M., Scharf B. 2006; MotD of Sinorhizobium and related α-proteobacteria is the flagellar-hook-length regulator and therefore assigned as FliK. J Bacteriol 188:2144–2153
    [Google Scholar]
  14. Fellay R., Frey J., Krisch H. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. Gene 52:147–154
    [Google Scholar]
  15. Hoang H. H., Gurich N., González J. E. 2008; Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti. J Bacteriol 190:861–871
    [Google Scholar]
  16. Jefferson R. A., Burgess S. M., Hirsh D. 1986; Beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci U S A 83:8447–8451
    [Google Scholar]
  17. Jones J. D., Gutterson N. 1987; An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene 61:299–306
    [Google Scholar]
  18. Kutsukake K., Ohya Y., Iino T. 1990; Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172:741–747
    [Google Scholar]
  19. Lang A. S., Beatty J. T. 2002; A bacterial signal transduction system controls genetic exchange and motility. J Bacteriol 184:913–918
    [Google Scholar]
  20. Liu R., Tran V. M., Schmidt E. L. 1989; Nodulating competitiveness of a non-motile Tn 7 mutant Bradyrhizobium japonicum in non-sterile soil. Appl Environ Microbiol 55:1895–1900
    [Google Scholar]
  21. Macnab R. M. 1992; Genetics and biogenesis of bacterial flagella. Annu Rev Genet 26:131–158
    [Google Scholar]
  22. Malek W. 1992; The role of motility in the efficiency of nodulation by Rhizobium meliloti. Arch Microbiol 158:26–28
    [Google Scholar]
  23. Martínez-Hackert E., Stock A. M. 1997; Structural relationships in the OmpR family of winged-helix transcription factors. J Mol Biol 269:301–312
    [Google Scholar]
  24. Mellor H. Y., Glenn A. R., Arwas R., Dilworth M. J. 1987; Symbiotic and competitive properties of Rhizobium trifolii. Arch Microbiol 148:34–39
    [Google Scholar]
  25. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  26. Miller L. D., Yost C. K., Hynes M. F., Alexandre G. 2007; The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation. Mol Microbiol 63:348–362
    [Google Scholar]
  27. Morita R. Y. 1988; Bioavailability of energy and its relationship to growth and starvation survival in nature. Can J Microbiol 34:436–441
    [Google Scholar]
  28. Pleier E., Schmitt R. 1989; Identification and sequence analysis of two related flagellin genes in Rhizobium meliloti. J Bacteriol 171:1467–1475
    [Google Scholar]
  29. Pleier E., Schmitt R. 1991; Expression of two Rhizobium meliloti flagellin genes and their contribution to the complex filament structure. J Bacteriol 173:2077–2085
    [Google Scholar]
  30. Poole P., Blyth A., Reid J., Walters K. 1994; myo-Inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae. Microbiology 140:2787–2795
    [Google Scholar]
  31. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313
    [Google Scholar]
  32. Priefer U. B. 1989; Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J Bacteriol 171:6161–6168
    [Google Scholar]
  33. Pruss B. M., Matsumura P. 1997; Cell cycle regulation of flagellar genes. J Bacteriol 179:5602–5604
    [Google Scholar]
  34. Quandt J., Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15–21
    [Google Scholar]
  35. Rampersaud A., Harlocker S. L., Inouye M. 1994; The OmpR protein of Escherichia coli binds to sites in the ompF promoter region in a hierarchical manner determined by its degree of phosphorylation. J Biol Chem 269:12559–12566
    [Google Scholar]
  36. Reeve W. G., Tiwari R. P., Worsley P. S., Dilwoth M. J., Glenn A. R., Howieson J. G. 1999; Constructs for insertional mutagenesis, transcriptional signal localization, and gene regulation studies in root nodule and other bacteria. Microbiology 145:1307–1316
    [Google Scholar]
  37. Rotter C., Muhlbacher S., Salamon D., Schmitt R., Scharf B. 2006; Rem, a new transcriptional activator of motility and chemotaxis in Sinorhizobium meliloti. J Bacteriol 188:6932–6942
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning, a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  39. Scharf B., Schuster-Wolff-Buhring H., Rachel R., Schmitt R. 2001; Mutational analysis of the Rhizobium lupini H13–3 and Sinorhizobium meliloti flagellin genes: importance of flagellin A for flagellar filament structure and transcriptional regulation. J Bacteriol 183:5334–5342
    [Google Scholar]
  40. Shi W., Zhou Y., Wild J., Adler J., Gross C. A. 1992; DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J Bacteriol 174:6256–6263
    [Google Scholar]
  41. Silverman M., Simon M. 1974; Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol 120:1196–1203
    [Google Scholar]
  42. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791
    [Google Scholar]
  43. Soby S., Bergman K. 1983; Motility and chemotaxis of Rhizobium meliloti in soil. Appl Environ Microbiol 46:995–998
    [Google Scholar]
  44. Sourjik V., Schmitt R. 1996; Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol Microbiol 22:427–436
    [Google Scholar]
  45. Sourjik V., Sterr W., Platzer J., Bos I., Haselbeck M., Schmitt R. 1998; Mapping of 41 chemotaxis, flagellar and motility genes to a single region of the Sinorhizobium meliloti chromosome. Gene 223:283–290
    [Google Scholar]
  46. Sourjik V., Muschler P., Scharf B., Schmitt R. 2000; VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium ( Rhizobium) meliloti. J Bacteriol 182:782–788
    [Google Scholar]
  47. Soutourina O. A., Bertin P. N. 2003; Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27:505–523
    [Google Scholar]
  48. Soutourina O. A., Semenova E. A., Parfenova V. V., Danchin A., Bertin P. 2001; Control of bacterial motility by environmental factors in polarly flagellated peritrichous bacteria isolated from Lake Baikal. Appl Environ Microbiol 67:3852–3859
    [Google Scholar]
  49. Tambalo D. D., Yost C. K., Hynes M. F. 2010; Characterization of swarming motility in Rhizobium leguminosarum bv. viciae. FEMS Microbiol Lett in press
    [Google Scholar]
  50. Thorne S. H., Williams H. D. 1997; Adaptation to nutrient starvation in Rhizobium leguminosarum bv. phaseoli: analysis of survival, stress resistance, and changes in macromolecular synthesis during entry to and exit from stationary phase. J Bacteriol 179:6894–6901
    [Google Scholar]
  51. Walker T. S., Bais H. P., Grotewold E., Vivanco J. M. 2003; Root exudation and rhizosphere biology. Plant Physiol 132:44–51
    [Google Scholar]
  52. Wei X., Bauer W. D. 1998; Starvation-induced changes in motility, chemotaxis, and flagellation of Rhizobium meliloti. Appl Environ Microbiol 64:1708–1714
    [Google Scholar]
  53. Yost C. K., Rochepeau P., Hynes M. F. 1998; Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. Microbiology 144:1945–1956
    [Google Scholar]
  54. Yost C. K., Del Bel K. L., Quandt J., Hynes M. F. 2004; Rhizobium leguminosarum methyl-accepting chemotaxis protein genes are down-regulated in the pea nodule. Arch Microbiol 182:505–513
    [Google Scholar]
  55. Young J. P., Crossman L. C., Johnston A. W., Thomson N. R., Ghazoui Z. F., Hull K. H., Wexler M., Curson A. R., Todd J. D. other authors 2006; The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.035386-0
Loading
/content/journal/micro/10.1099/mic.0.035386-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error