1887

Abstract

Previous studies have demonstrated that C, the leading causative agent of bacterial food-borne disease in the USA, exhibits high-frequency genetic variation that is associated with changes in cell-surface antigens and ability to colonize chickens. To expand our understanding of the role of genetic diversity in the disease process, we analysed the ability of three human disease isolates (strains 11168, 33292 and 81-176) and genetically marked derivatives to colonize Ross 308 broilers and C57BL/6J IL10-deficient mice. colonized broilers at much higher efficiency (all three strains, 23 of 24 broilers) than mice (11168 only, 8 of 24 mice). 11168 genetically marked strains colonized mice at very low efficiency (2 of 42 mice); however, reisolated from mice colonized both mice and broilers at high efficiency, suggesting that this pathogen can adapt genetically in the mouse. We compared the genome composition in the three wild-type strains and derivatives by microarray DNA/DNA hybridization analysis; the data demonstrated a high degree of genetic diversity in three gene clusters associated with synthesis and modification of the cell-surface structures capsule, flagella and lipo-oligosaccharide. Finally, we analysed the frequency of mutation in homopolymeric tracts associated with the contingency genes (GC tract) and (AT tracts) in culture and after passage through broilers and mice. adapted genetically in culture at high frequency and the degree of genetic diversity was increased by passage through broilers but was nearly eliminated in the gastrointestinal tract of mice. The data suggest that the broiler gastrointestinal tract provides an environment which promotes outgrowth and genetic variation in ; the enhancement of genetic diversity at this location may contribute to its importance as a human disease reservoir.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035717-0
2010-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2046.html?itemId=/content/journal/micro/10.1099/mic.0.035717-0&mimeType=html&fmt=ahah

References

  1. Ahmed I. H., Manning G., Wassenaar T. M., Cawthraw S., Newell D. G. 2002; Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials. Microbiology 148:1203–1212
    [Google Scholar]
  2. Ashgar S. S. A., Oldfield N., Woldridge K. G., Jones M. A., Irving G. J., Turner D. P. J., Ala'Aldeen D. A. A. 2007; CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut. J Bacteriol 189:1856–1865
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 2009 Current Protocols in Molecular Biology New York: Wiley;
  4. Bernatchez S., Gilbert M., Blanchard M. C., Karwaski M. F., Defrees S., Wakarchuk W. W. 2007; Variants of the β-1,3-galactosyltransferase CgtB from the bacterium Campylobacter jejuni have distinct acceptor specificities. Glycobiology 17:1333–1343
    [Google Scholar]
  5. Cawthraw S. A., Wassenaar T. M., Ayling R., Newell D. G. 1996; Increased colonization potential of Campylobacter jejuni strain 81176 after passage through chickens and its implication on the rate of transmission within flocks. Epidemiol Infect 117:213–215
    [Google Scholar]
  6. Coward C., van Dierman P. M., Conlan A. J., Stevens M. P., Jones M. A., Maskell D. J. 2008; Competing isogenic Campylobacter strains exhibit variable population structures in vivo. Appl Environ Microbiol 74:3857–3867
    [Google Scholar]
  7. de Boer P., Wagenaar J. A., Achterberg R. P., van Putten J. P., Schouls L. M., Dulm B. 2002; Generation of Campylobacter jejuni genetic diversity in vivo. Mol Microbiol 44:351–359
    [Google Scholar]
  8. Fouts D. E., Monogodin E. F., Mandrell R. E., Miller W. G., Rasko D. A., Ravel J., Brinkac L. M., DeBoy R. T., Parker C. T. other authors 2005; Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3:e15
    [Google Scholar]
  9. Gilbert M., Karwaski M. F., Bernatchez S., Young N. M., Taboada E., Michniewicz J., Cunningham A. M., Wakarchuk W. W. 2002; The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem 277:327–337
    [Google Scholar]
  10. Godschalk P. C., Heikema A. P., Gilbert M., Komagamine T., Ang C. W., Glerum J., Brochu D., Li J., Yuki N. other authors 2004; The crucial role of Campyloabacter jejuni genes in anti-ganglioside antibody induction in Guillain Barré syndrome. J Clin Invest 114:1659–1665
    [Google Scholar]
  11. Guerry P., Szymanski C. M., Prendergast M. M., Hickey T. E., Ewing C. P., Pattarini D. L., Moran A. P. 2002; Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects gangliocide mimicry and invasiveness in vitro. Infect Immun 70:787–793
    [Google Scholar]
  12. Hendrixson D. R. 2006; A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Mol Microbiol 61:1646–1659
    [Google Scholar]
  13. Hendrixson D. R. 2008; Restoration of flagellar biosynthesis by varied mutational events in Campylobacter jejuni. Mol Microbiol 70:519–536
    [Google Scholar]
  14. Hook H., Fattah M. A., Ericsson H., Vagsholm I., Danielsson-Tham M. L. 2005; Genotype dynamics of Campylobacter jejuni in a broiler flock. Vet Microbiol 106:109–117
    [Google Scholar]
  15. Horrocks S. M., Anderson R. C., Nisbert D. J., Ricke S. C. 2009; Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe 15:18–25
    [Google Scholar]
  16. Humphrey T., O'Brien S., Madsen M. 2007; Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol 117:237–257
    [Google Scholar]
  17. Jones M. A., Marston K. L., Woodall C. A., Maskell D. J., Linton D., Karlyshev A. V., Dorrell N., Wren B. W., Barrow P. A. 2004; Adaptation of Campylobacter jejuni NCTC 11168 to high level colonization of the avian gastrointestinal tract. Infect Immun 72:3769–3776
    [Google Scholar]
  18. Joslin S. N., Hendrixson D. R. 2008; Analysis of the Campylobacter jejuni FlgR response regulator suggests integration of diverse mechanisms to activate an NtrC-like protein. J Bacteriol 190:2422–2433
    [Google Scholar]
  19. Kakuda T., DiRita V. J. 2006; Cj 1496c encodes a Campylobacter jejuni glycoprotein that influences invasion of human epithelial cells and colonization of the chick gastrointestinal tract. Infect Immun 74:4715–4723
    [Google Scholar]
  20. Karlyshev A. V., Champion O. L., Churcher C., Brisson J. R., Jarrell H. C., Gilbert M., Brochu D., St Michael F., Li J. other authors 2005; Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Mol Microbiol 55:90–103
    [Google Scholar]
  21. Kim C. C., Joyce E. A., Chan K., Falkow S. 2002; Improved analytical methods for microarray-based genome-composition analysis. Genome Biol 3:research0065
    [Google Scholar]
  22. Knudsen K. N., Bang D. D., Anderson L. O., Madsen M. 2006; Campylobacter jejuni strains of human and chicken origin are invasive in chickens after oral challenge. Avian Dis 50:10–14
    [Google Scholar]
  23. Lee M. D., Newell D. G. 2006; Campylobacter in poultry; filling an ecological niche. Avian Dis 50:1–9
    [Google Scholar]
  24. Linton D., Gilbert M., Hitchen P. G., Dell A., Morris H. R., Wakarchuk W. W., Gregson N. A., Wren B. W. 2000; Phase variation of a beta-1,3-galactosyltransferase involved in generation of the ganglioside GM1-like oligosaccharide of Campylobacter jejuni. Mol Microbiol 37:501–514
    [Google Scholar]
  25. Mansfield L. S., Bell J. A., Wilson D. L., Murphy A. J., Eishikha H. M., Rathinam V. A., Fierro B. R., Linz J. E., Young V. B. 2007; C57BL/6 and congenic interleukin 10-deficient mice can serve as models of Campylobacter jejuni colonization and enteritis. Infect Immun 75:1099–1115
    [Google Scholar]
  26. Moxon R., Bayliss C., Hood D. 2006; Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40:307–333
    [Google Scholar]
  27. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T. other authors 2000; The genome sequence of the foodborne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668
    [Google Scholar]
  28. Poly F., Ewing C., Goon S., Hickey T. E., Rockabrand D., Majam G., Lee L., Phan J., Savarine N. J., Guerry P. 2007; Heterogeneity of a Campylobacter jejuni protein that is secreted through the flagellar filament. Infect Immun 75:3859–3867
    [Google Scholar]
  29. Prendergast M. M., Tribble D. R., Baqar S., Scott D. A., Ferris J. A., Walker R. L., Moran A. P. 2004; In vivo phase variation and serologic response to lipo-oligosaccharide of Campylobacter jejuni in experimental human infection. Infect Immun 72:916–922
    [Google Scholar]
  30. Ridley A. M., Toszeghy M. J., Cawthraw S. A., Wassenaar T. M., Newell D. G. 2008; Genetic instability is associated with changes in the colonization potential of Campylobacter jejuni in the avian intestine. J Appl Microbiol 105:95–104
    [Google Scholar]
  31. Ringoir D. D., Korolik V. 2003; Colonization phenotype and colonization potential differences in Campylobacter jejuni strains in chickens before and after passage in vitro. Vet Microbiol 92:225–235
    [Google Scholar]
  32. Snelling W. J., Matsudea M., Moore J. E., Dooley J. S. 2005; Campylobacter jejuni. Lett Appl Microbiol 41:297–302
    [Google Scholar]
  33. Suzuki H., Yamamoto S. 2009; Campylobacter contamination in retail poultry meats and by-products in the world: a literature survey. J Vet Med Sci 71:255–261
    [Google Scholar]
  34. Trieu-Cuot P., Gerbaud G., Lambert T., Curvalin P. 1985; In vivo transfer of genetic information between gram-positive and gram-negative bacteria. EMBO J 4:3583–3587
    [Google Scholar]
  35. Van Alphen L. B., Wuhrer M., Bleumink N. M. C., Hensberger P. J., Deelder A. M., vanPutten J. P. M. 2008; A functional Campylobacter jejuni maf4 gene results in novel glycoforms on flagellin and altered agglutination behaviour. Microbiology 154:3385–3397
    [Google Scholar]
  36. van Doorn P. A., Ruts L., Jacobs B. 2008; Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. Lancet Neurol 7:939–950
    [Google Scholar]
  37. Vucic S., Kiernan M., Cornblath D. R. 2009; Guillain-Barré syndrome; an update. J Clin Neurosci 16:733–741
    [Google Scholar]
  38. Wassenaar T. M., Geihausen B., Newell D. G. 1998; Evidence of genome instability in Campylobacter jejuni isolated from poultry. Appl Environ Microbiol 64:1816–1821
    [Google Scholar]
  39. Wassenaar T. M., Wagenaar J. A., Rigter A., Fearnley C., Newell D. G., Dulm B. 2002; Homonucleotide stretches in chromosomal DNA of Campylobacter jejuni display high frequency polymorphism as detected by direct PCR analysis. FEMS Microbiol Lett 212:77–85
    [Google Scholar]
  40. Wilson D. L., Bell J. A., Young V. B., Wilder S. R., Mansfield L. S., Linz J. E. 2003; Variation of the natural transformation frequency of Campylobacter jejuni in liquid shake culture. Microbiology 149:3603–3615
    [Google Scholar]
  41. Young K. T., Davis L. M., DiRita V. J. 2007; Campylobacterjejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5:665–679
    [Google Scholar]
  42. Yuki N. 2010; Human gangliocides and bacterial lipo-oligosaccharides in the development of autoimmune neuropathies. Methods Mol Biol 600:51–65
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.035717-0
Loading
/content/journal/micro/10.1099/mic.0.035717-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error