1887

Abstract

Plasmid pBaSysBioII was constructed for high-throughput analysis of gene expression in . It is an integrative plasmid with a ligation-independent cloning (LIC) site, allowing the generation of transcriptional fusions with desired promoters. Integration is by a Campbell-type event and is non-mutagenic, placing the fusion at the homologous chromosomal locus. Using , , and promoters that are responsive to phosphate availability, growth rate and carbon source, we show that detailed profiles of promoter activity can be established, with responses to changing conditions being measurable within 1 min of the stimulus. This makes pBaSysBioII a highly versatile tool for real-time gene expression analysis in growing cells of

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035758-0
2010-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1600.html?itemId=/content/journal/micro/10.1099/mic.0.035758-0&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746
    [Google Scholar]
  2. Andersen J. B., Sternberg C., Poulsen L. K., Bjorn S. P., Givskov M., Molin S. 1998; New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246
    [Google Scholar]
  3. Aslanidis C., de Jong P. J. 1990; Ligation-independent cloning of PCR products (LIC-PCR. Nucleic Acids Res 18:6069–6074
    [Google Scholar]
  4. Bisicchia P., Lioliou E., Noone D., Salzberg L., Botella E., Hubner S., Devine K. M. 2010; Peptidoglycan metabolism is controlled by the WalRK(YycFG) and PhoPR two-component systems in phosphate limited Bacillus subtilis cells. Mol Microbiol 75:972–989
    [Google Scholar]
  5. Blencke H. M., Homuth G., Ludwig H., Mäder U., Hecker M., Stülke J. 2003; Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng 5:133–149
    [Google Scholar]
  6. Bonsor D., Butz S. F., Solomons J., Grant S., Fairlamb I. J., Fogg M. J., Grogan G. 2006; Ligation independent cloning (LIC) as a rapid route to families of recombinant biocatalysts from sequenced prokaryotic genomes. Org Biomol Chem 4:1252–1260
    [Google Scholar]
  7. Cormack B. P., Valdivia R. H., Falkow S. 1996; FACS optimized mutants of the green fluorescence protein (GFP. Gene 173:33–38
    [Google Scholar]
  8. Doan T., Aymerich S. 2003; Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol Microbiol 47:1709–1721
    [Google Scholar]
  9. Fillinger S., Boschi-Muller S., Azza S., Dervyn E., Branlant G., Aymerich S. 2000; Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in non-photosynthetic bacteria. J Biol Chem 275:14031–14037
    [Google Scholar]
  10. Fogg M. J., Wilkinson A. J. 2008; High-throughput approaches to crystallisation and crystal structure determination. Biochem Soc Trans 36:771–775
    [Google Scholar]
  11. Glaser P., Kunst F., Arnaud M., Coudart M. P., Gonzales W., Hullo M. F., Ionescu M., Lubochinsky B., Marcelino L. other authors 1993; Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325 degrees to 333 degrees. Mol Microbiol 10:371–384
    [Google Scholar]
  12. Guérout-Fleury A. M., Shazand K., Frandsen N., Stragier P. 1995; Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167:335–336
    [Google Scholar]
  13. Harwood C. R., Cutting S. M. 1990; Chemically defined growth media and supplements. In Molecular Biological Methods for Bacillus p 548 Edited by Harwood C. R., Cutting S. M. Chichester, UK: Wiley;
    [Google Scholar]
  14. Howell A., Dubrac S., Noone D., Varughese K. I., Devine K. M. 2006; Interactions between the YycFG and PhoPR two-component systems in Bacillus subtilis: the PhoR kinase phosphorylates the non-cognate YycF response regulator upon phosphate limitation. Mol Microbiol 59:1199–1215
    [Google Scholar]
  15. Kalir S., McClure J., Pabbaraju K., Southward C., Ronen M., Leibler S., Surette M. G., Alon U. 2001; Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292:2080–2083
    [Google Scholar]
  16. Kock H., Gerth U., Hecker M. 2004; MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis. Mol Microbiol 51:1087–1102
    [Google Scholar]
  17. Muller J. P., An Z., Merad T., Hancock I. C., Harwood C. R. 1997; Influence of Bacillus subtilis phoR on cell wall anionic polymers. Microbiology 143:947–956
    [Google Scholar]
  18. Rasmussen S., Nielsen H. B., Jarmer H. 2009; The transcriptionally active regions in the genome of Bacillus subtilis. Mol Microbiol 73:1043–1057
    [Google Scholar]
  19. Ronen M., Rosenberg R., Shraiman B. I., Alon U. 2002; Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc Natl Acad Sci U S A 99:10555–10560
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  21. Stülke J., Martin-Verstraete I., Zagorec M., Rose M., Klier A., Rapoport G. 1997; Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol 25:65–78
    [Google Scholar]
  22. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097–3104
    [Google Scholar]
  23. Veening J. W., Stewart E. J., Berngruber T. W., Taddei F., Kuipers O. P., Hamoen L. W. 2008; Bet-hedging and epigenetic inheritance in bacterial cell development. Proc Natl Acad Sci U S A 105:4393–4398
    [Google Scholar]
  24. Zaslaver A., Bren A., Ronen M., Itzkovitz S., Kikoin I., Shavit S., Liebermeister W., Surette M. G., Alon U. 2006; A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3:623–628
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.035758-0
Loading
/content/journal/micro/10.1099/mic.0.035758-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error