1887

Abstract

The siderophore pyochelin of promotes growth under iron limitation and induces the expression of its biosynthesis genes via the transcriptional AraC/XylS-type regulator PchR. strain CHA0 makes the optical antipode of pyochelin termed enantio-pyochelin, which also promotes growth and induces the expression of its biosynthesis genes when iron is scarce. Growth promotion and signalling by pyochelin and enantio-pyochelin are highly stereospecific and are known to involve the pyochelin and enantio-pyochelin outer-membrane receptors FptA and FetA, respectively. Here we show that stereospecificity in signalling is also based on the stereospecificity of the homologous PchR proteins of and towards their respective siderophore effectors. We found that PchR functioned in the heterologous species only if supplied with its native ligand and that the FptA and FetA receptors enhanced the efficiency of signalling. By constructing and expressing hybrid and truncated PchR regulators we showed that the weakly conserved N-terminal domain of PchR is responsible for siderophore specificity. Thus, both uptake and transcriptional regulation confer stereospecificity to pyochelin and enantio-pyochelin biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037796-0
2010-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1772.html?itemId=/content/journal/micro/10.1099/mic.0.037796-0&mimeType=html&fmt=ahah

References

  1. Ankenbauer R. G., Quan H. N. 1994; FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors. J Bacteriol 176:307–319
    [Google Scholar]
  2. Ankenbauer R. G., Toyokuni T., Staley A., Rinehart K. L. Jr, Cox C. D. 1988; Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa. J Bacteriol 170:5344–5351
    [Google Scholar]
  3. Bao Y., Lies D. P., Fu H., Roberts G. P. 1991; An improved Tn 7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 109:167–168
    [Google Scholar]
  4. Carmi R., Carmeli S., Levy E., Gough F. J. 1994; (+)-( S)-Dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens. J Nat Prod 57:1200–1205
    [Google Scholar]
  5. Castignetti D. 1997; Probing of Pseudomonas aeruginosa, Pseudomonas aureofaciens, Burkholderia ( Pseudomonas) cepacia, Pseudomonas fluorescens, and Pseudomonas putida with the ferripyochelin receptor A gene and the synthesis of pyochelin in Pseudomonas aureofaciens, Pseudomonas fluorescens, and Pseudomonas putida. Curr Microbiol 34:250–257
    [Google Scholar]
  6. Chipperfield J. R., Ratledge C. 2000; Salicylic acid is not a bacterial siderophore: a theoretical study. Biometals 13:165–168
    [Google Scholar]
  7. Cox C. D., Graham R. 1979; Isolation of an iron-binding compound from Pseudomonas aeruginosa. J Bacteriol 137:357–364
    [Google Scholar]
  8. Cox C. D., Rinehart K. L. Jr, Moore M. L., Cook J. C. Jr 1981; Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 78:4256–4260
    [Google Scholar]
  9. Darling P., Chan M., Cox A. D., Sokol P. A. 1998; Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 66:874–877
    [Google Scholar]
  10. Farinha M. A., Kropinski A. M. 1990; High efficiency electroporation of Pseudomonas aeruginosa using frozen cell suspensions. FEMS Microbiol Lett 58:221–225
    [Google Scholar]
  11. Gallegos M.-T., Schleif R., Bairoch A., Hofmann K., Ramos J. L. 1997; AraC/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61:393–410
    [Google Scholar]
  12. Heeb S., Blumer C., Haas D. 2002; Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184:1046–1056
    [Google Scholar]
  13. Heinrichs D. E., Poole K. 1993; Cloning and sequence analysis of a gene ( pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. J Bacteriol 175:5882–5889
    [Google Scholar]
  14. Hoegy F., Lee X., Noel S., Rognan D., Mislin G. L., Reimmann C., Schalk I. J. 2009; Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent pseudomonads. J Biol Chem 284:14949–14957
    [Google Scholar]
  15. Keel C., Voisard C., Berling C., Kahr G., Défago G. 1989; Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584–589
    [Google Scholar]
  16. Laville J., Blumer C., Von Schroetter C., Gaia V., Defago G., Keel C., Haas D. 1998; Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J Bacteriol 180:3187–3196
    [Google Scholar]
  17. Michel L., González N., Jagdeep S., Nguyen-Ngoc T., Reimmann C. 2005; PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Mol Microbiol 58:495–509
    [Google Scholar]
  18. Michel L., Bachelard A., Reimmann C. 2007; Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa. Microbiology 153:1508–1518
    [Google Scholar]
  19. Miller W. G., Leveau J. H., Lindow S. E. 2000; Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact 13:1243–1250
    [Google Scholar]
  20. ó Cuív P., Clarke P., Lynch D., O'Connell M. 2004; Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively. J Bacteriol 186:2996–3005
    [Google Scholar]
  21. Perry R. D., Abney J., Mier I. Jr, Lee Y., Bearden S. W., Fetherston J. D. 2003; Regulation of the Yersinia pestis Yfe and Ybt iron transport systems. Adv Exp Med Biol 529:275–283
    [Google Scholar]
  22. Reimmann C., Serino L., Beyeler M., Haas D. 1998; Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa. Microbiology 144:3135–3148
    [Google Scholar]
  23. Reimmann C., Patel H. M., Serino L., Barone M., Walsh C. T., Haas D. 2001; Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. J Bacteriol 183:813–820
    [Google Scholar]
  24. Rinehart K. L., Staley A. L., Wilson S. R., Ankenbauer R. G., Cox C. D. 1995; Stereochemical assignment of the pyochelins. J Org Chem 60:2786–2791
    [Google Scholar]
  25. Ruíz R., Marqués S., Ramos J. L. 2003; Leucines 193 and 194 at the N-terminal domain of the XylS protein, the positive transcriptional regulator of the TOL meta-cleavage pathway, are involved in dimerization. J Bacteriol 185:3036–3041
    [Google Scholar]
  26. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual,, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  27. Schlegel K., Taraz K., Budzikiewicz H. 2004; The stereoisomers of pyochelin, a siderophore of Pseudomonas aeruginosa. Biometals 17:409–414
    [Google Scholar]
  28. Schlegel K., Lex J., Taraz K., Budzikiewicz H. 2006; The X-ray structure of the pyochelin Fe3+ complex. Z Naturforsch [C] 61:263–266
    [Google Scholar]
  29. Schleif R. 2003; AraC protein: a love-hate relationship. Bioessays 25:274–282
    [Google Scholar]
  30. Schnider U., Keel C., Blumer C., Troxler J., Defago G., Haas D. 1995; Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol 177:5387–5392
    [Google Scholar]
  31. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56
    [Google Scholar]
  32. Serino L., Reimmann C., Baur H., Beyeler M., Visca P., Haas D. 1995; Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228
    [Google Scholar]
  33. Serino L., Reimmann C., Visca P., Beyeler M., della Chiesa V., Haas D. 1997; Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J Bacteriol 179:248–257
    [Google Scholar]
  34. Sokol P. A. 1986; Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia. J Clin Microbiol 23:560–562
    [Google Scholar]
  35. Stanisich V. A., Holloway B. W. 1972; A mutant sex factor of Pseudomonas aeruginosa. Genet Res 19:91–108
    [Google Scholar]
  36. Tatusova T. A., Madden T. L. 1999; blast 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250
    [Google Scholar]
  37. Tseng C. F., Burger A., Mislin G. L., Schalk I. J., Yu S. S., Chan S. I., Abdallah M. A. 2006; Bacterial siderophores: the solution stoichiometry and coordination of the Fe(III) complexes of pyochelin and related compounds. J Biol Inorg Chem 11:419–432
    [Google Scholar]
  38. Visca P., Imperi F., Lamont I. L. 2007; Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30
    [Google Scholar]
  39. Voisard C., Rella M., Haas D. 1988; Conjugative transfer of plasmid RP1 to soil isolates of Pseudomonas fluorescens is facilitated by certain large RP1 deletions. FEMS Microbiol Lett 55:9–13
    [Google Scholar]
  40. Voisard C., Bull C. T., Keel C., Laville J., Maurhofer M., Schnider U., Défago G., Haas D. 1994; Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches. In Molecular Ecology of Rhizosphere Microorganisms pp 67–89 Edited by O'Gara F., Dowling D. N., Boesten B. Weinheim, Germany: VCH Publishers;
    [Google Scholar]
  41. Ye R. W., Haas D., Ka J. O., Krishnapillai V., Zimmermann A., Baird C., Tiedje J. M. 1995; Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J Bacteriol 177:3606–3609
    [Google Scholar]
  42. Youard Z. A., Mislin G. L., Majcherczyk P. A., Schalk I. J., Reimmann C. 2007; Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem 282:35546–35553
    [Google Scholar]
  43. Zuber S., Carruthers F., Keel C., Mattard A., Blumer C., Pessi G., Gigot-Bonnefoy C., Schnider-Keel U., Heeb S. other authors 2003; GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:634–644
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037796-0
Loading
/content/journal/micro/10.1099/mic.0.037796-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error