1887

Abstract

has been previously shown to stimulate the production of phenazine toxins in dual-species colony biofilms. Here, we report that mutants, which lack the master quorum sensing system regulator, regain the ability to produce quorum-sensing-regulated phenazines when cultured with . Farnesol, a signalling molecule produced by , was sufficient to stimulate phenazine production in LasR laboratory strains and clinical isolates. Δ mutants are defective in production of the quinolone signal (PQS) due to their inability to properly induce , which encodes the enzyme necessary for the last step in PQS biosynthesis. We show that expression of in a Δ strain was sufficient to restore PQS production, and that farnesol restored expression in Δ mutants. The farnesol-mediated increase in required RhlR, a transcriptional regulator downstream of LasR, and farnesol led to higher levels of -butyryl-homoserine lactone, the small molecule activator of RhlR. Farnesol promotes the production of reactive oxygen species (ROS) in a variety of species. Because the antioxidant -acetylcysteine suppressed farnesol-induced RhlR activity in LasR strains, and hydrogen peroxide was sufficient to restore PQS production in mutants, we propose that ROS are responsible for the activation of downstream portions of this quorum sensing pathway. LasR mutants frequently arise in the lungs of patients chronically infected with . The finding that , farnesol or ROS stimulate virulence factor production in strains provides new insight into the virulence potential of these strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037911-0
2010-10-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/3096.html?itemId=/content/journal/micro/10.1099/mic.0.037911-0&mimeType=html&fmt=ahah

References

  1. Abramoff M. D., Magelhaes P. J., Ram S. J. 2004; Image processing with ImageJ. Biophotonics International 11:36–42
    [Google Scholar]
  2. Alhede M., Bjarnsholt T., Jensen P. Ø., Phipps R. K., Moser C., Christophersen L., Christensen L. D., van Gennip M., Parsek M. other authors 2009; Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155:3500–3508
    [Google Scholar]
  3. Allard J. B., Rinaldi L., Wargo M. J., Allen G., Akira S., Uematsu S., Poynter M. E., Hogan D. A., Rincon M., Whittaker L. A. 2009; Th2 allergic immune response to inhaled fungal antigens is modulated by TLR-4-independent bacterial products. Eur J Immunol 39:776–788
    [Google Scholar]
  4. Bakare N., Rickerts V., Bargon J., Just-Nubling G. 2003; Prevalence of Aspergillus fumigatus and other fungal species in the sputum of adult patients with cystic fibrosis. Mycoses 46:19–23
    [Google Scholar]
  5. Bredenbruch F., Geffers R., Nimtz M., Buer J., Haussler S. 2006; The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8:1318–1329
    [Google Scholar]
  6. Cabrol S., Olliver A., Pier G. B., Andremont A., Ruimy R. 2003; Transcription of quorum-sensing system genes in clinical and environmental isolates of Pseudomonas aeruginosa. J Bacteriol 185:7222–7230
    [Google Scholar]
  7. Chotirmall S. H., O'Donoghue E., Bennett K., Gunaratnam C., O'Neill S. J., McElvaney N. G. 2010; Sputum Candida albicans presages FEV1 decline and hospitalized exacerbations in cystic fibrosis. Chest (in press ). doi: 10.1378/chest.09-2996
    [Google Scholar]
  8. Cugini C., Calfee M. W., Farrow J. M. III, Morales D. K., Pesci E. C., Hogan D. A. 2007; Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906
    [Google Scholar]
  9. D'Argenio D. A., Wu M., Hoffman L. R., Kulasekara H. D., Déziel E., Smith E. E., Nguyen H., Ernst R. K., Larson Freeman T. J. other authors 2007; Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64:512–533
    [Google Scholar]
  10. Dekimpe V., Deziel E. 2009; Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 155:712–723
    [Google Scholar]
  11. Dénervaud V., TuQuoc P., Blanc D., Favre-Bonte S., Krishnapillai V., Reimmann C., Haas D., van Delden C. 2004; Characterization of cell-to-cell signaling-deficient Pseudomonas aeruginosa strains colonizing intubated patients. J Clin Microbiol 42:554–562
    [Google Scholar]
  12. Déziel E., Lepine F., Milot S., He J., Mindrinos M. N., Tompkins R. G., Rahme L. G. 2004; Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101:1339–1344
    [Google Scholar]
  13. Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Camara M., Williams P. 2003; The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43
    [Google Scholar]
  14. Elble R. 1992; A simple and efficient procedure for transformation of yeasts. Biotechniques 13:18–20
    [Google Scholar]
  15. Ernst R. K., Moskowitz S. M., Emerson J. C., Kraig G. M., Adams K. N., Harvey M. D., Ramsey B., Speert D. P., Burns J. L., Miller S. I. 2007; Unique lipid A modifications in Pseudomonas aeruginosa isolated from the airways of patients with cystic fibrosis. J Infect Dis 196:1088–1092
    [Google Scholar]
  16. Farrow J. M., Sund Z. M., Ellison M. L., Wade D. S., Coleman J. P., Pesci E. C. 2008; PqsE functions independently of PqsR– Pseudomonas Quinolone Signal and enhances the rhl quorum sensing system. J Bacteriol 190:7043–7051
    [Google Scholar]
  17. Gallagher L. A., McKnight S. L., Kuznetsova M. S., Pesci E. C., Manoil C. 2002; Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480
    [Google Scholar]
  18. Gibson J., Sood A., Hogan D. A. 2009; Pseudomonas aeruginosaCandida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol 75:504–513
    [Google Scholar]
  19. Gilbert K. B., Kim T. H., Gupta R., Greenberg E. P., Schuster M. 2009; Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol 73:1072–1085
    [Google Scholar]
  20. Gillum A. M., Tsay E. Y., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182
    [Google Scholar]
  21. Gomes F. I. A., Teixeira P., Azeredo J., Oliveira R. 2009; Effect of farnesol on planktonic and biofilm cells of Staphylococcus epidermidis. Curr Microbiol 59:118–122
    [Google Scholar]
  22. Haase G., Skopnik H., Groten T., Kusenbach G., Posselt H. G. 1991; Long-term fungal cultures from sputum of patients with cystic fibrosis. Mycoses 34:373–376
    [Google Scholar]
  23. Häussler S., Becker T. 2008; The Pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog 4:e1000166
    [Google Scholar]
  24. Heurlier K., Denervaud V., Haenni M., Guy L., Krishnapillai V., Haas D. 2005; Quorum sensing-negative ( lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J Bacteriol 187:4875–4883
    [Google Scholar]
  25. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp–FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86
    [Google Scholar]
  26. Hoffman C. S., Winston F. 1987; A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272
    [Google Scholar]
  27. Hoffman L. R., Kulasekara H. D., Emerson J., Houston L. S., Burns J. L., Ramsey B. W., Miller S. I. 2009; Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros 8:66–70
    [Google Scholar]
  28. Hoffman L. R., Richardson A. R., Houston L. S., Kulasekara H. D., Martens-Habbena W., Klausen M., Burns J. L., Stahl D. A., Hassett D. J. other authors 2010; Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog 6:e1000712
    [Google Scholar]
  29. Hogan D. A., Kolter R. 2002; PseudomonasCandida interactions: an ecological role for virulence factors. Science 296:2229–2232
    [Google Scholar]
  30. Hogan D. A., Vik A., Kolter R. 2004; A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223
    [Google Scholar]
  31. Hornby J. M., Jensen E. C., Lisec A. D., Tasto J. J., Jahnke B., Shoemaker R., Dussault P., Nickerson K. W. 2001; Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992
    [Google Scholar]
  32. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68
    [Google Scholar]
  33. Langford M. L., Atkin A. L., Nickerson K. W. 2009; Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans. Future Microbiol 4:1353–1362
    [Google Scholar]
  34. Langford M. L., Hasim S., Nickerson K. W., Atkin A. L. 2010; Activity and toxicity of farnesol towards Candida albicans are dependent on growth conditions. Antimicrob Agents Chemother 54:940–942
    [Google Scholar]
  35. Latifi A., Winson M. K., Foglino M., Bycroft B. W., Stewart G. S., Lazdunski A., Williams P. 1995; Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–343
    [Google Scholar]
  36. Lesprit P., Faurisson F., Join-Lambert O., Roudot-Thoraval F., Foglino M., Vissuzaine C., Carbon C. 2003; Role of the quorum-sensing system in experimental pneumonia due to Pseudomonas aeruginosa in rats. Am J Respir Crit Care Med 167:1478–1482
    [Google Scholar]
  37. Li Z. H., Kosorok M. R., Farrell P. M., Laxova A., West S. E. H., Green C. G., Collins J., Rock M. J., Splaingard M. L. 2005; Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis. JAMA 293:581–588
    [Google Scholar]
  38. Luján A. M., Moyano A. J., Segura I., Argarana C. E., Smania A. M. 2007; Quorum-sensing-deficient ( lasR) mutants emerge at high frequency from a Pseudomonas aeruginosa mutS strain. Microbiology 153:225–237
    [Google Scholar]
  39. Machida K., Tanaka T. 1999; Farnesol-induced generation of reactive oxygen species dependent on mitochondrial transmembrane potential hyperpolarization mediated by F(0)F(1)-ATPase in yeast. FEBS Lett 462:108–112
    [Google Scholar]
  40. Machida K., Tanaka T., Fujita K., Taniguchi M. 1998; Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial electron transport chain in the yeast Saccharomyces cerevisiae. J Bacteriol 180:4460–4465
    [Google Scholar]
  41. Mahenthiralingam E., Campbell M. E., Speert D. P. 1994; Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62:596–605
    [Google Scholar]
  42. McAlester G., O'Gara F., Morrissey J. P. 2008; Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J Med Microbiol 57:563–569
    [Google Scholar]
  43. McGrath S., Wade D. S., Pesci E. C. 2004; Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol Lett 230:27–34
    [Google Scholar]
  44. Navarro J., Rainisio M., Harms H. K., Hodson M. E., Koch C., Mastella G., Strandvik B., McKenzie S. G. 2001; Factors associated with poor pulmonary function: cross-sectional analysis of data from the ERCF. European Epidemiologic Registry of Cystic Fibrosis. Eur Respir J 18:298–305
    [Google Scholar]
  45. Peleg A. Y., Hogan D. A., Mylonakis E. 2010; Medically important bacterial-fungal interactions. Nat Rev Microbiol 8:340–349
    [Google Scholar]
  46. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132
    [Google Scholar]
  47. Pesci E. C., Milbank J., Pearson J., McKnight S., Kende A., Greenberg E., Iglewski B. 1999; Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234
    [Google Scholar]
  48. Preston M. J., Seed P. C., Toder D. S., Iglewski B. H., Ohman D. E., Gustin J. K., Goldberg J. B., Pier G. B. 1997; Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect Immun 65:3086–3090
    [Google Scholar]
  49. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M. 1995; Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902
    [Google Scholar]
  50. Rajan S., Saiman L. 2002; Pulmonary infections in patients with cystic fibrosis. Semin Respir Infect 17:47–56
    [Google Scholar]
  51. Rumbaugh K. P., Griswold J. A., Iglewski B. H., Hamood A. N. 1999; Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67:5854–5862
    [Google Scholar]
  52. Sandoz K. M., Mitzimberg S. M., Schuster M. 2007; Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci U S A 104:15876–15881
    [Google Scholar]
  53. Semighini C. P., Hornby J., Dumitru R., Nickerson K., Harris S. 2006; Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol 59:753–764
    [Google Scholar]
  54. Shanks R. M., Caiazza N. C., Hinsa S. M., Toutain C. M., O'Toole G. A. 2006; Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 72:5027–5036
    [Google Scholar]
  55. Shirtliff M. E., Krom B. P., Meijering R. A., Peters B. M., Zhu J., Scheper M. A., Harris M. L., Jabra-Rizk M. A. 2009a; Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother 53:2392–2401
    [Google Scholar]
  56. Shirtliff M. E., Peters B. M., Jabra-Rizk M. A. 2009b; Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett 299:1–8
    [Google Scholar]
  57. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D'Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P. other authors 2006; Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492
    [Google Scholar]
  58. Swift S., Karlyshev A. V., Fish L., Durant E. L., Winson M. K., Chhabra S. R., Williams P., Macintyre S., Stewart G. S. 1997; Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179:5271–5281
    [Google Scholar]
  59. Takaya A., Tabuchi F., Tsuchiya H., Isogai E., Yamamoto T. 2008; Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease. J Bacteriol 190:4181–4188
    [Google Scholar]
  60. Tang H. B., DiMango E., Bryan R., Gambello M., Iglewski B. H., Goldberg J. B., Prince A. 1996; Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 64:37–43
    [Google Scholar]
  61. Tingpej P., Smith L., Rose B., Zhu H., Conibear T., Al Nassafi K., Manos J., Elkins M., Bye P. other authors 2007; Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J Clin Microbiol 45:1697–1704
    [Google Scholar]
  62. Van Melderen L., Aertsen A. 2009; Regulation and quality control by Lon-dependent proteolysis. Res Microbiol 160:645–651
    [Google Scholar]
  63. Vinckx T., Wei Q., Matthijs S., Cornelis P. 2010; The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. Microbiology 156:678–686
    [Google Scholar]
  64. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. 1994; Construction of improved Escherichia–Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148:81–86
    [Google Scholar]
  65. Wilder C. N., Allada G., Schuster M. 2009; Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum sensing populations from cystic fibrosis lung infections. Infect Immun 77:5631–5639
    [Google Scholar]
  66. Xiao G. P., Deziel E., He J. X., Lépine F., Lesic B., Castonguay M. H., Milot S., Tampakaki A. P., Stachel S. E., Rahme L. G. 2006a; MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62:1689–1699
    [Google Scholar]
  67. Xiao G. P., He J. X., Rahme L. G. 2006b; Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology 152:1679–1686
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037911-0
Loading
/content/journal/micro/10.1099/mic.0.037911-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error