1887

Abstract

subspecies serovar Enteritidis (. Enteritidis) has been identified as a significant cause of salmonellosis in humans. pathogenicity islands 1 and 2 (SPI-1 and SPI-2) each encode a specialized type III secretion system (T3SS) that enables to manipulate host cells at various stages of the invasion/infection process. For the purposes of our studies we used a chicken isolate of Enteritidis (Sal18). In one study, we orally co-challenged 35-day-old specific pathogen-free (SPF) chickens with two bacterial strains per group. The control group received two versions of the wild-type strain Sal18: Sal18 Tn : :  and Sal18 Tn : : , while the other two groups received the wild-type strain (Sal18 Tn : : ) and one of two mutant strains. From this study, we concluded that . Enteritidis strains deficient in the SPI-1 and SPI-2 systems were outcompeted by the wild-type strain. In a second study, groups of SPF chickens were challenged at 1 week of age with four different strains: the wild-type strain, and three other strains lacking either one or both of the SPI-1 and SPI-2 regions. On days 1 and 2 post-challenge, we observed a reduced systemic spread of the SPI-2 mutants, but by day 3, the systemic distribution levels of the mutants matched that of the wild-type strain. Based on these two studies, we conclude that the . Enteritidis SPI-2 T3SS facilitates invasion and systemic spread in chickens, although alternative mechanisms for these processes appear to exist.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038018-0
2010-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2770.html?itemId=/content/journal/micro/10.1099/mic.0.038018-0&mimeType=html&fmt=ahah

References

  1. Babu U. S., Gaines D. W., Lillehoj H., Raybourne R. B. 2006; Differential reactive oxygen and nitrogen production and clearance of Salmonella serovars by chicken and mouse macrophages. Dev Comp Immunol 30:942–953
    [Google Scholar]
  2. Berndt A., Wilhelm A., Jugert C., Pieper J., Sachse K., Methner U. 2007; Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness. Infect Immun 75:5993–6007
    [Google Scholar]
  3. Bohez L., Ducatelle R., Pasmans F., Botteldoorn N., Haesebrouck F., Van Immerseel F. 2006; Salmonella enterica serovar Enteritidis colonization of the chicken caecum requires the HilA regulatory protein. Vet Microbiol 116:202–210
    [Google Scholar]
  4. Brawn L. C., Hayward R. D., Koronakis V. 2007; Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 1:63–75
    [Google Scholar]
  5. Brown N. F., Vallance B. A., Coombes B. K., Valdez Y., Coburn B. A., Finlay B. B. 2005; Salmonella pathogenicity island 2 is expressed prior to penetrating the intestine. PLoS Pathog 1:e32
    [Google Scholar]
  6. Callaway T. R., Edrington T. S., Anderson R. C., Byrd J. A., Nisbet D. J. 2008; Gastrointestinal microbial ecology and the safety of our food supply as related to Salmonella. J Anim Sci 86:E163–E172
    [Google Scholar]
  7. Catarame T. M. G., O'Hanlon K. A., McDowell D. A., Blair I. S., Duffy G. 2005; Comparison of a real-time polymerase chain reaction assay with a culture method for the detection of Salmonella in retail meat samples. J Food Saf 26:1–15
    [Google Scholar]
  8. Chakravortty D., Rohde M., Jager L., Deiwick J., Hensel M. 2005; Formation of a novel surface structure encoded by Salmonella pathogenicity island 2. EMBO J 24:2043–2052
    [Google Scholar]
  9. Clavijo R. I., Loui C., Andersen G. L., Riley L. W., Lu S. 2006; Identification of genes associated with survival of Salmonella enterica serovar Enteritidis in chicken egg albumen. Appl Environ Microbiol 72:1055–1064
    [Google Scholar]
  10. Coombes B. K., Finlay B. B. 2005; Insertion of the bacterial type III translocon: not your average needle stick. Trends Microbiol 13:92–95
    [Google Scholar]
  11. Coombes B. K., Brown N. F., Valdez Y., Brumell J. H., Finlay B. B. 2004; Expression and secretion of Salmonella pathogenicity island-2 virulence genes in response to acidification exhibit differential requirements of a functional type III secretion apparatus and SsaL. J Biol Chem 279:49804–49815
    [Google Scholar]
  12. Coombes B. K., Coburn B. A., Potter A. A., Gomis S., Mirakhur K., Li Y., Finlay B. B. 2005; Analysis of the contribution of Salmonella pathogenicity islands 1 and 2 to enteric disease progression using a novel bovine ileal loop model and a murine model of infectious enterocolitis. Infect Immun 73:7161–7169
    [Google Scholar]
  13. Craig N. L. 1991; Tn 7: a target site-specific transposon. Mol Microbiol 5:2569–2573
    [Google Scholar]
  14. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  15. Desin T. S., Lam P. K., Koch B., Mickael C., Berberov E., Wisner A. L., Townsend H. G., Potter A. A., Köster W. 2009; Salmonella enterica serovar Enteritidis pathogenicity island 1 is not essential for but facilitates rapid systemic spread in chickens. Infect Immun 77:2866–2875
    [Google Scholar]
  16. Dieye Y., Ameiss K., Mellata M., Curtiss R. III 2009; The Salmonella pathogenicity island (SPI) 1 contributes more than SPI2 to the colonization of the chicken by Salmonella enterica serovar Typhimurium. BMC Microbiol 9:3
    [Google Scholar]
  17. el Yaagoubi A., Kohiyama M., Richarme G. 1994; Localization of DnaK (chaperone 70) from Escherichia coli in an osmotic-shock-sensitive compartment of the cytoplasm. J Bacteriol 176:7074–7078
    [Google Scholar]
  18. Foley S. L., Lynne A. M., Nayak R. 2008; Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J Anim Sci 86:E149–E162
    [Google Scholar]
  19. Fortune D. R., Suyemoto M., Altier C. 2006; Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect Immun 74:331–339
    [Google Scholar]
  20. Galán J. E. 2001; Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17:53–86
    [Google Scholar]
  21. Ghosh P. 2004; Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev 68:771–795
    [Google Scholar]
  22. Giacomodonato M. N., Uzzau S., Bacciu D., Caccuri R., Sarnacki S. H., Rubino S., Cerquetti M. C. 2007; SipA, SopA, SopB, SopD and SopE2 effector proteins of Salmonella enterica serovar Typhimurium are synthesized at late stages of infection in mice. Microbiology 153:1221–1228
    [Google Scholar]
  23. Guiney D. G. 2005; The role of host cell death in Salmonella infections. Curr Top Microbiol Immunol 289:131–150
    [Google Scholar]
  24. Hansen-Wester I., Chakravortty D., Hensel M. 2004; Functional transfer of Salmonella pathogenicity island 2 to Salmonella bongori and Escherichia coli. Infect Immun 72:2879–2888
    [Google Scholar]
  25. Hautefort I., Thompson A., Eriksson-Ygberg S., Parker M. L., Lucchini S., Danino V., Bongaerts R. J., Ahmad N., Rhen M. other authors 2008; During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 10:958–984
    [Google Scholar]
  26. Hensel M., Shea J. E., Raupach B., Monack D., Falkow S., Gleeson C., Kubo T., Holden D. W. 1997; Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella pathogenicity island 2. Mol Microbiol 24:155–167
    [Google Scholar]
  27. Hueck C. J. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433
    [Google Scholar]
  28. Jones M. A., Wigley P., Page K. L., Hulme S. D., Barrow P. A. 2001; Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect Immun 69:5471–5476
    [Google Scholar]
  29. Jones M. A., Hulme S. D., Barrow P. A., Wigley P. 2007; The Salmonella pathogenicity island 1 and Salmonella pathogenicity island 2 type III secretion systems play a major role in pathogenesis of systemic disease and gastrointestinal tract colonization of Salmonella enterica serovar Typhimurium in the chicken. Avian Pathol 36:199–203
    [Google Scholar]
  30. Kuhle V., Hensel M. 2004; Cellular microbiology of intracellular Salmonella enterica: functions of the type III secretion system encoded by Salmonella pathogenicity island 2. Cell Mol Life Sci 61:2812–2826
    [Google Scholar]
  31. Lawley T. D., Chan K., Thompson L. J., Kim C. C., Govoni G. R., Monack D. M. 2006; Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2:e11
    [Google Scholar]
  32. Lee Y. J., Mo I. P., Kang M. S. 2005; Safety and efficacy of Salmonella gallinarum 9R vaccine in young laying chickens. Avian Pathol 34:362–366
    [Google Scholar]
  33. Martinez-Argudo I., Jepson M. A. 2008; Salmonella translocates across an in vitro M cell model independently of SPI-1 and SPI-2. Microbiology 154:3887–3894
    [Google Scholar]
  34. McGhie E. J., Brawn L. C., Hume P. J., Humphreys D., Koronakis V. 2009; Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 12:117–124
    [Google Scholar]
  35. Meenakshi M., Bakshi C. S., Butchaiah G., Bansal M. P., Siddiqui M. Z., Singh V. P. 1999; Adjuvanted outer membrane protein vaccine protects poultry against infection with Salmonella enteritidis. Vet Res Commun 23:81–90
    [Google Scholar]
  36. Morgan E., Campbell J. D., Rowe S. C., Bispham J., Stevens M. P., Bowen A. J., Barrow P. A., Maskell D. J., Wallis T. S. 2004; Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol 54:994–1010
    [Google Scholar]
  37. Murphy K. C., Campellone K. G. 2003; Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol Biol 4:11
    [Google Scholar]
  38. Olekhnovich I. N., Kadner R. J. 2006; Crucial roles of both flanking sequences in silencing of the hilA promoter in Salmonella enterica. J Mol Biol 357:373–386
    [Google Scholar]
  39. Piao Z., Toyota-Hanatani Y., Ohta H., Sasai K., Tani H., Baba E. 2007; Effects of Salmonella enterica subsp. enterica serovar Enteritidis vaccination in layer hens subjected to S. Enteritidis challenge and various feed withdrawal regimens. Vet Microbiol 125:111–119
    [Google Scholar]
  40. Rana N., Kulshreshtha R. C. 2006; Cell-mediated and humoral immune responses to a virulent plasmid-cured mutant strain of Salmonella enterica serotype Gallinarum in broiler chickens. Vet Microbiol 115:156–162
    [Google Scholar]
  41. Rhen M., Dorman C. J. 2005; Hierarchical gene regulators adapt Salmonella enterica to its host milieus. Int J Med Microbiol 294:487–502
    [Google Scholar]
  42. Rychlik I., Karasova D., Sebkova A., Volf J., Sisak F., Havlickova H., Kummer V., Imre A., Szmolka A. other authors 2009; Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens. BMC Microbiol 9:268
    [Google Scholar]
  43. Sadeyen J. R., Trotereau J., Velge P., Marly J., Beaumont C., Barrow P. A., Bumstead N., Lalmanach A. C. 2004; Salmonella carrier state in chicken: comparison of expression of immune response genes between susceptible and resistant animals. Microbes Infect 6:1278–1286
    [Google Scholar]
  44. Sadeyen J. R., Trotereau J., Protais J., Beaumont C., Sellier N., Salvat G., Velge P., Lalmanach A. C. 2006; Salmonella carrier-state in hens: study of host resistance by a gene expression approach. Microbes Infect 8:1308–1314
    [Google Scholar]
  45. Shah D. H., Lee M. J., Park J. H., Lee J. H., Eo S. K., Kwon J. T., Chae J. S. 2005; Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology 151:3957–3968
    [Google Scholar]
  46. Schlumberger M. C., Hardt W. D. 2006; Salmonella type III secretion effectors: pulling the host cell's strings. Curr Opin Microbiol 9:46–54
    [Google Scholar]
  47. Thompson A., Rowley G., Alston M., Danino V., Hinton J. C. 2006; Salmonella transcriptomics: relating regulons, stimulons and regulatory networks to the process of infection. Curr Opin Microbiol 9:109–116
    [Google Scholar]
  48. Thomson N. R., Clayton D. J., Windhorst D., Vernikos G., Davidson S., Churcher C., Quail M. A., Stevens M., Jones M. A. other authors 2008; Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res 18:1624–1637
    [Google Scholar]
  49. Tischer B. K., von Einem J., Kaufer B., Osterrieder N. 2006; Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40:191–197
    [Google Scholar]
  50. Turner A. K., Lovell M. A., Hulme S. D., Zhang-Barber L., Barrow P. A. 1998; Identification of Salmonella typhimurium genes required for colonization of the chicken alimentary tract and for virulence in newly hatched chicks. Infect Immun 66:2099–2106
    [Google Scholar]
  51. Vieira A. other authors 2009; WHO Global Foodborne Infections Network Country Databank – a resource to link human and non-human sources of Salmonella. XII International Society for Veterinary Epidemiology and Economics Conference
    [Google Scholar]
  52. Waterman S. R., Holden D. W. 2003; Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5:501–511
    [Google Scholar]
  53. White A. P., Allen-Vercoe E., Jones B. W., DeVinney R., Kay W. W., Surette M. G. 2007; An efficient system for markerless gene replacement applicable in a wide variety of enterobacterial species. Can J Microbiol 53:56–62
    [Google Scholar]
  54. Wigley P., Jones M. A., Barrow P. A. 2002; Salmonella enterica serovar Pullorum requires the Salmonella pathogenicity island 2 type III secretion system for virulence and carriage in the chicken. Avian Pathol 31:501–506
    [Google Scholar]
  55. Winstanley C., Hart C. A. 2001; Type III secretion systems and pathogenicity islands. J Med Microbiol 50:116–126
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038018-0
Loading
/content/journal/micro/10.1099/mic.0.038018-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error