1887

Abstract

The flagellin protein is glycosylated with structural analogues of the nine-carbon sugar pseudaminic acid. The most common modifications in the 81-176 strain are the 5,7-di-acetylated derivative (Pse5Ac7Ac) and an acetamidino-substituted version (Pse5Am7Ac). Other structures detected include acetylated and acetylglutamine-substituted derivatives (Pse5Am7Ac8OAc and Pse5Am7Ac8GlnNAc, respectively). Recently, a derivative of pseudaminic acid modified with a di-methylglyceroyl group was detected in NCTC 11168 strain. The gene products required for Pse5Ac7Ac biosynthesis have been characterized, but those genes involved in generating other structures have not. We have demonstrated that the mobility of the NCTC 11168 flagellin protein in SDS-PAGE gels can vary spontaneously and we investigated the role of single nucleotide repeats or homopolymeric-tract-containing genes from the flagellin glycosylation locus in this process. One such gene, Cj1295, was shown to be responsible for structural changes in the flagellin glycoprotein. Mass spectrometry demonstrated that the Cj1295 gene is required for glycosylation with the di-methylglyceroyl-modified version of pseudaminic acid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038091-0
2010-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/1953.html?itemId=/content/journal/micro/10.1099/mic.0.038091-0&mimeType=html&fmt=ahah

References

  1. Aas F. E., Vik A., Vedde J., Koomey M., Egge-Jacobsen W. 2007; Neisseria gonorrhoeae O-linked pilin glycosylation: functional analyses define both the biosynthetic pathway and glycan structure. Mol Microbiol 65:607–624
    [Google Scholar]
  2. Aguero-Rosenfeld M. E., Yang X. H., Nachamkin I. 1990; Infection of adult Syrian hamsters with flagellar variants of Campylobacter jejuni. Infect Immun 58:2214–2219
    [Google Scholar]
  3. Alm R. A., Guerry P., Power M. E., Trust T. J. 1992; Variation in antigenicity and molecular weight of Campylobacter coli VC167 flagellin in different genetic backgrounds. J Bacteriol 174:4230–4238
    [Google Scholar]
  4. Banerjee A., Wang R., Supernavage S. L., Ghosh S. K., Parker J., Ganesh N. F., Wang P. G., Gulati S., Rice P. A. 2002; Implications of phase variation of a gene ( pgtA) encoding a pilin galactosyl transferase in gonococcal pathogenesis. J Exp Med 196:147–162
    [Google Scholar]
  5. Cawthraw S., Ayling R., Nuijten P., Wassenaar T., Newell D. G. 1994; Isotype, specificity, and kinetics of systemic and mucosal antibodies to Campylobacter jejuni antigens, including flagellin, during experimental oral infections of chickens. Avian Dis 38:341–349
    [Google Scholar]
  6. Cawthraw S. A., Feldman R. A., Sayers A. R., Newell D. G. 2002; Long-term antibody responses following human infection with Campylobacter jejuni. Clin Exp Immunol 130:101–106
    [Google Scholar]
  7. Chou W. K., Dick S., Wakarchuk W. W., Tanner M. E. 2005; Identification and characterization of NeuB3 from Campylobacter jejuni as a pseudaminic acid synthase. J Biol Chem 280:35922–35928
    [Google Scholar]
  8. Coward C., Grant A. J., Swift C., Philp J., Towler R., Heydarian M., Frost J. A., Maskell D. A. 2006; Phase-variable surface structures are required for infection of Campylobacter jejuni by bacteriophages. Appl Environ Microbiol 72:4638–4647
    [Google Scholar]
  9. Creuzenet C. 2004; Characterization of Cj1293, a new UDP-GlcNAc C6 dehydratase from Campylobacter jejuni. FEBS Lett 559:136–140
    [Google Scholar]
  10. Doig P., Kinsella N., Guerrry P., Trust T. J. 1996; Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol Microbiol 19:379–387
    [Google Scholar]
  11. Gilbert M., Karwaski M.-F., Bernatchez S., Young N. M., Taboada E., Michniewicz J., Cunningham A. M., Wakarchuk W. W. 2002; The genetic basis for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. J Biol Chem 277:327–337
    [Google Scholar]
  12. Goon S., Kelly J. F., Logan S. M., Ewing C. P., Guerry P. 2003; Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol Microbiol 50:659–671
    [Google Scholar]
  13. Grant C. C., Konkel M. E., Cieplak W., Tompkins L. S. 1993; Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect Immun 61:1764–1771
    [Google Scholar]
  14. Guerry P., Doig P., Alm R. A., Burr D. H., Kinsella N., Trust T. J. 1996; Identification and characterization of genes required for post-translational modification of Campylobacter coli VC167 flagellin. Mol Microbiol 19:369–378
    [Google Scholar]
  15. Guerry P., Ewing C. P., Schirm M., Lorenzo M., Kelly J., Pattarini D., Majam G., Thibault P., Logan S. 2006; Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60:299–311
    [Google Scholar]
  16. Harris L. A., Logan S. M., Guerry P., Trust T. J. 1987; Antigenic variation in Campylobacter flagella. J Bacteriol 169:5066–5071
    [Google Scholar]
  17. Hendrixson D. R. 2006; A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Mol Microbiol 61:1646–1659
    [Google Scholar]
  18. Hendrixson D. R. 2008; Restoration of flagellar biosynthesis by varied mutational events in Campylobacter jejuni. Mol Microbiol 70:519–536
    [Google Scholar]
  19. Ishiyama N., Creuzenet C., Miller W. L., Demendi M., Anderson E. M., Harauz G., Lam J. S., Berghuis A. M. 2006; Structural studies of FlaA1 from Helicobacter pylori reveal the mechanism for inverting 4,6-dehydratase activity. J Biol Chem 281:24489–24495
    [Google Scholar]
  20. Karlyshev A. V., Linton D., Gregson N. A., Wren B. W. 2002; A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. Microbiology 148:473–480
    [Google Scholar]
  21. Linton D., Gilbert M., Hitchen P. G., Dell A., Morris H. R., Wakarchuk W. W., Gregson N. A., Wren B. W. 2000; Phase variation of a β-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Mol Microbiol 37:501–514
    [Google Scholar]
  22. Liu F., Tanner M. E. 2006; PseG of pseudaminic acid biosynthesis, a UDP-sugar hydrolase as a masked glycosyltransferase. J Biol Chem 281:20902–20909
    [Google Scholar]
  23. Logan S. M., Kelly J. F., Thibault P., Ewing C. P., Guerry P. 2002; Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol Microbiol 46:587–597
    [Google Scholar]
  24. Logan S. M., Hui J. P. M., Vinogradov E., Aubry A. J., Melanson J. E., Kelly J. F., Nothaft H., Soo E. C. 2009; Identification of novel carbohydrate modifications on Campylobacter jejuni 11168 flagellin using metabolomics-based approaches. FEBS J 276:1014–1023
    [Google Scholar]
  25. McNally D. J., Hui J. P. M., Aubry A. J., Mui K. K. K., Guerry P., Brisson J.-R., Logan S. M., Soo E. C. 2006; Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81–176 using a focused metabolomics approach. J Biol Chem 281:18489–18498
    [Google Scholar]
  26. Moxon R., Baylis C., Hood D. 2006; Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40:307–333
    [Google Scholar]
  27. Nachamkin I., Hart A. M. 1985; Western blot analysis of the human antibody response to Campylobacter jejuni cellular antigens during gastrointestinal infection. J Clin Microbiol 21:33–38
    [Google Scholar]
  28. Nachamkin I., Yang X. H., Stern N. J. 1993; Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl Environ Microbiol 59:1269–1273
    [Google Scholar]
  29. Obhi R. K., Creuzenet C. 2005; Biochemical characterization of the Campylobacter jejuni Cj1294, a novel UDP-4-keto-6-deoxy-GlcNAc aninotransferase that generates UDP-4-amino-4,6-dideoxy-GalNAc. J Biol Chem 280:20902–20908
    [Google Scholar]
  30. Park S. F., Purdy D., Leach S. 2000; Localized reversible frameshift mutation in the flhA gene confers phase variability to flagellin gene expression in Campylobacter coli. J Bacteriol 182:207–210
    [Google Scholar]
  31. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T. other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668
    [Google Scholar]
  32. Pavlovskis O. R., Rollins D. M., Haberberger R. L. Jr, Green A. E., Habash L., Strocko S., Walker R. I. (1991; Significance of flagella in colonization resistance of rabbits immunized with Campylobacter spp. Infect Immun 59:2259–2264
    [Google Scholar]
  33. Power M. E., Guerry P., McCubbin W. D., Kay C. M., Trust T. J. 1994; Structural and antigenic characteristics of Campylobacter coli FlaA flagellin. J Bacteriol 176:3303–3313
    [Google Scholar]
  34. Power P. M., Roddam L. F., Rutter K., Fitzpatrick S. Z., Srikhanta Y. N., Jennings M. P. 2003; Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis. Mol Microbiol 49:833–847
    [Google Scholar]
  35. Schirm M., Soo E. C., Aubry A. J., Austin J., Thibault P., Logan S. M. 2003; Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol Microbiol 48:1579–1592
    [Google Scholar]
  36. Schirm M., Schoenhofen I. C., Logan S. M., Waldron K. C., Thibault P. 2005; Identification of unusual bacterial glycosylation by tandem mass spectrometry analyses of intact proteins. Anal Chem 77:7774–7782
    [Google Scholar]
  37. Schoenhofen I. C., McNally D. J., Brisson J.-R., Logan S. M. 2006a; Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP- N-acetylglucosamine by a single enzymatic reaction. Glycobiology 16:8C–14C
    [Google Scholar]
  38. Schoenhofen I. C., Lunin V. L., Julien J.-P., Li Y., Ajamian E., Matte A., Cygler M., Brisson J. R., Aubry A. other authors 2006b; Structural and functional characterization of PseC, an aminotransferase involved in the biosynthesis of pseudaminic acid, an essential flagellar modification in Helicobacter pylori. J Biol Chem 281:8907–8916
    [Google Scholar]
  39. Szymanski C. M., Wren B. W. 2005; Protein glycosylation on bacterial mucosal pathogens. Nat Rev Microbiol 3:225–237
    [Google Scholar]
  40. Szymanski C. M., St. Michael F., Jarrell H. C., Li J., Gilbert M., Larocque S., Vinogradov E., Brisson J. R. 2003a; Detection of N-linked glycans and phase variable lipooligosaccharides and capsules from Campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J Biol Chem 278:24509–24520
    [Google Scholar]
  41. Szymanski C. M., Logan S. M., Linton D., Wren B. W. 2003b; Campylobacter – a tale of two protein glycosylation systems. Trends Microbiol 11:233–238
    [Google Scholar]
  42. Thibault P., Logan S. M., Kelly J. F., Brisson J.-R., Ewing C. P., Trust T. J., Guerry P. 2001; Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J Biol Chem 276:34862–34870
    [Google Scholar]
  43. Trieu-Cuot P., Gerbaud G., Lambet T., Courvalin P. 1985; In vivo transfer of genetic information between Gram-positive and Gram-negative bacteria. EMBO J 4:3583–3587
    [Google Scholar]
  44. van Alphen L. B., Wuhrer M., Bleumink-Pluym N. M. C., Hensbergen P. J., Deeelder A. M., van Putten J. P. M. 2008; A functional Campylobacter jejuni maf4 gene results in novel glycoforms on flagellin and altered autoagglutination behaviour. Microbiology 154:3385–3397
    [Google Scholar]
  45. van Vliet A. H. M., Wood A. C., Henderson J., Wooldridge K., Ketley J. M. 1998; Genetic manipulation of enteric Campylobacter species. In Methods in Microbiology,vol. 271, Bacterial Pathogenesis pp 407–419 Edited by Williams P., Ketley J., Salmond G. San Diego: Academic Press;
    [Google Scholar]
  46. Wassenaar T. M., Bleumink-Pluym N. M., van der Zeijst B. A. 1991; Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J 10:2055–2061
    [Google Scholar]
  47. Wassenaar T. M., van der Zeijst B. A., Ayling R., Newell D. G. 1993; Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J Gen Microbiol 139:1171–1175
    [Google Scholar]
  48. Wassenaar T. M., Wagenaar J. A., Rigter A., Fearnley C., Newell D. G., Duim B. 2002; Homonucleotide stretches in chromosomal DNA of Campylobacter jejuni display high frequency polymorphism as detected by direct PCR analysis. FEMS Microbiol Lett 212:77–85
    [Google Scholar]
  49. Wenman W. M., Chai J., Louie T. J., Goudreau C., Lior H., Newell D. G., Pearson A. D., Taylor D. E. 1985; Antigenic analysis of Campylobacter flagellar protein and other proteins. J Clin Microbiol 21:108–112
    [Google Scholar]
  50. Widders P. R., Thomas L. M., Long K. A., Tokhi M. A., Panaccio M., Apos E. 1998; The specificity of antibody in chickens immunised to reduce intestinal colonisation with Campylobacter jejuni. Vet Microbiol 64:39–50
    [Google Scholar]
  51. Yao R., Burr D. H., Doig P., Trust T. J., Niu H., Guerry P. 1994; Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol Microbiol 14:883–893
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038091-0
Loading
/content/journal/micro/10.1099/mic.0.038091-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error